
White Rabbit PTP Core User’s Manual
August 2012 – Release 2.0

Building and Running

Grzegorz Daniluk (CERN BE-CO-HT)

i

Table of Contents

Introduction . 1

1 Repositories and Releases . 1

2 Building the Core . 1
2.1 HDL synthesis . 2
2.2 LM32 software compilation . 3

3 Running and Configuring . 4
3.1 Downloading firmware to SPEC . 4
3.2 Writing EEPROM and calibration . 5
3.3 Running the Core . 6

4 Troubleshooting . 7

5 Questions, reporting bugs . 8

Appendix A WRPC Shell Commands . 9

Chapter 2: Building the Core 1

Introduction

This is the user manual for the White Rabbit PTP Core developed on ohwr.org. It describes
the building and running process. If you don’t want to get your hands dirty and prefer to use the
binaries available at http://www.ohwr.org/projects/wr-cores/files you can skip Chapter 2
[Building the Core], page 1 and move forward directly to Chapter 3 [Running and Configuring],
page 4.

1 Repositories and Releases

This version of the White Rabbit PTP Core is release 2.0. The code and documentation is
distributed in the following places:

http://www.ohwr.org/projects/wr-cores/documents

This place hosts the pdf documentation for every official release.

http://www.ohwr.org/projects/wr-cores/files

Here we place the .tar.gz file for every release, including the git tree and synthe-
sized/compiled binaries

git://ohwr.org/hdl-core-lib/wr-cores.git

Read-only repository with the complete HDL design of WRPC

git://ohwr.org/hdl-core-lib/wr-cores/wrpc-sw.git

Read-only repository with the WRPC LM32 software (incl. WR PTP daemon)

Other tools useful in building and running WRPC can be fetched from the following locations:

git://ohwr.org/misc/hdl-make.git

hdlmake is used in the HDL synthesis process to build the Makefile based on the set
of Manifest files.

http://www.ohwr.org/attachments/download/1133/lm32.tar.xz

LM32 toolchain used to compile the WRPC firmware (software).

The repositories containing the WRPC gateware and software (wr-cores, wrpc-sw) are tagged
with wrpc-v2.0 tag. Other tools used to build the core and load it into SPEC board should be
used in their newest available versions stored in master branch of an appropriate git repository
(unless specified otherwise in this document).

Any official hot fixes, if any, for this release will live in the branch called wrpc-v2.0-fixes, in
each WRPC repository.

2 Building the Core

Building the White Rabbit PTP Core is a two step process. First you have to synthesize the
FPGA firmware (gateware). This describes the hardware inside FPGA that is later used by
LM32 software to perform WR synchronization.

To perform the steps below you will need a computer running Linux.

http://www.ohwr.org/projects/wr-cores/files

Chapter 2: Building the Core 2

2.1 HDL synthesis

Before running the synthesis process you have to make sure that your environment is set correctly.
You need the Xilinx ISE Software with free WebPack license installed on a PC. It contains the
script settings32.sh and settings32.csh (depending on the shell you use) that sets up all the
system variables required by Xilinx software. For default installation path the script is located
in:

/opt/Xilinx/<version>/ISE_DS/settings32.sh

and has to be executed before other tools are used. The easiest way to ensure that ISE-related
variables are set in the shell is to check if $XILINX variable contains the path to your ISE
installation directory.

Note: current version of hdlmake tool developed at CERN requires modification of $XILINX
variable after settings32 script execution. This (provided that the installation path for ISE is
/opt/Xilinx/<version>) should look like this:

$ export XILINX=/opt/Xilinx/<version>/ISE_DS

Note: the Xilinx project file included in the WRPC sources was created with Xilinx ISE 14.1.
It is recommended to use the newest available version of ISE software.

HDL sources for WR PTP Core can be synthesized with nothing more but Xilinx ISE software,
but using hdlmake tool developed at CERN is much more convenient. It creates a synthesis
Makefile and ISE project file based on the set of Manifest.py files deployed among directories
inside wr-cores repository.

First, please clone the hdlmake repository from its location given in Chapter 1 [Repositories and
Releases], page 1:

$ git clone git://ohwr.org/misc/hdl-make.git <your_hdlmake_location>

and add the hdlmake binary location to your $PATH to be able to call it from any directory:

$ export PATH=<your_hdlmake_location>:$PATH

Note: the hdlmake usage instructions here are based on version 493ce82. When there will be
newer commits, they can be used but please be aware that its execution parameters may change.
In that case please refer to hdlmake documentation.

Having Xilinx ISE software and hdlmake you can clone the main WR PTP Core git repository
and start building the FPGA bitstream. First, please create a local copy of the wr-cores in the
preferred location on your system. This release is marked with wrpc-v2.0 tag.

$ git clone git://ohwr.org/hdl-core-lib/wr-cores.git <your_wrpc_location>

$ cd <your_wrpc_location>

$ git checkout wrpc-v2.0

Note: alternatively you can get the release sources from the tarball available in
http://www.ohwr.org/projects/wr-cores/files

The subdirectory which contains the main synthesis Manifest.py for SPEC board and in which
you should perform the whole process is:

$ cd <your_wrpc_location>/syn/spec_1_1/wr_core_demo/

Executing hdlmake without any parameters will fetch other git repositories containing submod-
ules essential for WRPC, and store their local copies to:

<your_wrpc_location>/ip_cores

After that, the actual synthesis is just the matter of executing the command:

http://www.ohwr.org/projects/wr-cores/files

Chapter 2: Building the Core 3

$ make

just as in a regular software compilation process. This takes (depending on your computer
speed) about 15 minutes and if you are lucky (i.e. there were no errors) it should create FPGA
firmware in two files: spec top.bit and spec top.bin. The former can be downloaded to FPGA
using Xilinx software (Impact or Chipscope Pro) and Xilinx Platform Cable. The latter can be
used to program the Spartan 6 chip on SPEC using the kernel driver from spec-sw repository
(usage example in Chapter 3 [Running and Configuring], page 4).

If, on the other hand, you would like to clean-up the repository and rebuild everything from
scratch you can use the following commands:

• $ make clean - removes all synthesis reports and log files;

• $ make mrproper - removes spec top.bin and spec top.bit files;

• $ hdlmake clean - removes all fetched repositories (modules) from ip cores subdirectory.

2.2 LM32 software compilation

To compile the LM32 software for White Rabbit PTP Core you will need to download and
unpack the LM32 toolchain from the location mentioned already in Chapter 1 [Repositories and
Releases], page 1:

$ wget http://www.ohwr.org/attachments/download/1133/lm32.tar.xz

$ tar xJf lm32.tar.xz -C <your_lm32_location>

Similar as with hdlmake in Chapter 2 [Building the Core], page 1, you will need to add the
LM32 toolchain binaries location to you $PATH to be able to call them from any directory:

$ export PATH=<your_lm32_location>/lm32/bin:$PATH

To get the release sources of WRPC software please clone the wrpc-sw git repository tagged
with wrpc-v2.0 tag:

$ git clone git://ohwr.org/hdl-core-lib/wr-cores/wrpc-sw.git <your_wrpcsw_location>

$ cd <your_wrpcsw_location>

$ git checkout wrpc-v2.0

Note: alternatively you can get the release sources from the tarball available in
http://www.ohwr.org/projects/wr-cores/files

The WRPC software repository contains a ptp-nosposix (that contains the WR PTP software
daemon) in the form of a git submodule. Your fresh local copy cloned from ohwr.org has therefore
the ptp-noposix directory empty. To fetch the ptp-noposix you have to execute the following git
commands:

$ git submodule init

$ git submodule update

First you have to compile the tools provided with WRPC software which are used later during
the software compilation:

$ cd tools

$ make

$ cd ..

Now you have everything that is needed to build the software for WRPC. Before compilation
the decision can be made whether to turn on or not the software support for Etherbone core
that is integrated inside WRPC gateware for SPEC board. By default it is disabled but can
be turned on by setting the value of WITH ETHERBONE variable inside the Makefile. The
compilation is made by a simple command without any additional parameters:

http://www.ohwr.org/projects/wr-cores/files

Chapter 3: Running and Configuring 4

$ make

The resulting binary wrc.bin can be then used with the loader from spec-sw software package to
program the LM32 inside the White Rabbit PTP Core (Chapter 3 [Running and Configuring],
page 4).

3 Running and Configuring

3.1 Downloading firmware to SPEC

There is a Software support for the SPEC board project in ohwr.org. It contains a set of Linux
kernel drivers and userspace tools written by Alessandro Rubini and Tomasz Wlostowski that
are used to communicate with the SPEC board plugged into the PCI-Express port of the PC.

The instructions in this section are based on commit 27b4ad9 of spec-sw
repository and are limited to absolutely minimum required to load WRPC
FPGA and LM32 firmware. The full manual for spec-sw can be found on:
http://www.ohwr.org/attachments/download/1506/spec-sw-2012-08-08.pdf. If
there will be a newer version of SPEC software support you would like to use, the up-to-date
documentation can always be found in doc/ subdirectory of spec-sw git repository.

First, please clone the git repository of SPEC software support package and build the kernel
driver and userspace tools:

$ git clone git://ohwr.org/fmc-projects/spec/spec-sw.git <your_specsw_location>

$ cd <your_specsw_location>

$ git checkout 27b4ad9

$ make

Then you have to copy the spec top.bin to /lib/firmware/fmc/. changing its name:

$ cp <your_wrpc_location>/syn/spec_1_1/wr_core_demo/spec_top.bin \

/lib/firmware/fmc/spec-demo.bin

and after that you are ready to load the spec.ko driver that configures the Spartan 6 FPGA on
SPEC with a given bitstream (make sure you are in <your spacsw location>:

$ insmod kernel/spec.ko name=demo

To check if the FPGA firmware file was found by the driver and correctly loaded to FPGA the
dmesg Linux command can be called. Among plenty of messages you should be able to find
something very similar to:

[99883.768214] spec_probe (device 0003:0000)

[99883.768220] spec_probe: current 8639 (insmod)

[99883.768248] spec 0000:03:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16

[99883.768302] spec 0000:03:00.0: irq 49 for MSI/MSI-X

[99883.768971] spec_load_files

[99883.774842] spec_load_fpga: got binary file "fmc/spec-demo.bin",

1485512 (0x16aac8) bytes

[99883.966491] spec_load_submodule: load "fmc/spec-demo": 256

If everything went right up to this moment you can write the LM32 binary (wrc.bin) to the
SPEC board. For this purpose, there is a spec-cl tool in the spec-sw repository. Programming
is done with the simple command below:

$ tools/spec-cl <your_wrpcsw_location>/wrc.bin

http://www.ohwr.org/attachments/download/1506/spec-sw-2012-08-08.pdf

Chapter 3: Running and Configuring 5

Now you should be able to start the Virtual-UART software (also a part of spec-sw package)
that will be used to interact with the White Rabbit PTP Core Shell:

$ tools/spec-vuart

If you are able to see the WRPC Shell prompt wrc# that means the Core is up and running on
your SPEC. Congratulations !

3.2 Writing EEPROM and calibration

By default WRPC starts in WR Slave mode, uses the calibration values for Axcen AXGE-
3454-0531 SFP and for release FPGA bitstream available in http://www.ohwr.org/projects/wr-
cores/files. This might be fine for running White Rabbit PTP Core for the first time and
synchronizing it to WR Switch. There are however, two mechanisms that are useful when
playing more with WRPC shell and different settings.

Note: the examples below describe only a subset of WRPC Shell commands required to make a
basic configuration and calibration. A full description of all supported commands can be found
in Appendix A [WRPC Shell commands], page 9.

First, before making the configuration changes, it is recommended (but not obligatory) to stop
the PTP daemon. Then, the debug messages from daemon would not show up to the console
while you will interact with the shell.

wrc# ptp stop

If your SPEC has any Mezzanine board plugged into the FMC connector (e.g. DIO, Fine Delay,
TDC...) then you can create a calibration database inside the FMC EEPROM. The example
below presents the WRPC Shell commands which create an empty SFP database and add two
Axcen transceivers with deltaTx, deltaRx and alpha parameters associated with them. Those
SFPs are most widely used in WR development and demonstrations:

wrc# sfp erase

wrc# sfp add AXGE-1254-0531 46407 167843 73622176

wrc# sfp add AXGE-3454-0531 46407 167843 -73622176

To check the content of the SFP database you can execute the sfp show shell command.

The calibration procedure of WRPC is limited to absolutely minimum and is fully automatized.
It measures the t2/t4 phase transition point and stores the value into the FMC EEPROM so
that the calibration would not have to be repeated every time the Core starts. However, it is
important to remember that this calibration function should be executed only once but for
every new FPGA firmware synthesized form wr-cores repository:

wrc# ptp stop

wrc# sfp detect

wrc# sfp match

wrc# calibration force

The example above detects the SFP transceiver plugged into the SPEC board, tries to read its
parameters from our newly created SFP database and forces the calibration to be executed. The
force argument is required since calibration without any arguments tries first to read the t2/t4
phase transition stored in EEPROM, and does not run the procedure if the value was previously
stored there. That is used to get the measured value and pass it to PTP daemon before it starts
(see init script examples).

The WR PTP Core’s mode of operation (WR Master/WR Slave) can be set using the mode
shell command:

wrc# mode slave

Chapter 3: Running and Configuring 6

or

wrc# mode master

This stops the PTP daemon, changes the mode of operation, but does not start it back auto-
matically. Therefore after changing it you need to start the daemon manually:

wrc# ptp start

One option is to type all those commands to initialize the WRPC software to the required state
every time the Core starts. However, you can also write your own init script to FMC EEPROM
and WRPC software will execute it each time it comes back from the reset state (this also
includes coming back from reset after programming the FPGA and LM32). Building the simple
script that reads the detected SFP parameters and t2/t4 phase transition value from EEPROM,
configures the mode of operation to WR Slave and starts the PTP daemon is presented here:

wrc# init erase

wrc# init add ptp stop

wrc# init add sfp detect

wrc# init add sfp match

wrc# init add calibration

wrc# init add mode slave

wrc# init add ptp start

Almost exactly the same one can be used for running SPEC in WR Master mode. The only
difference would be of course init add mode slave vs. init add mode master.

3.3 Running the Core

Having the SFP database, t2/t4 phase transition point and the init script created in Section 3.2
[Writing EEPROM and calibration], page 5 you can restart the WR PTP Core by reprogramming
the LM32 software (with spec-cl tool) or by typing the shell command:

wrc# init boot

After that you should see the log messages that confirm the init script execution:

(...)

executing: ptp stop

executing: sfp detect

AXGE-3454-0531

executing: sfp match

SFP matched, dTx=46407, dRx=167843, alpha=-73622176

executing: calibration

Found phase transition in EEPROM: 2384ps

executing: mode slave

SPLL_Init: running as Slave, 1 ref channels, 2 out channels

Locking PLL

executing: ptp start

wrc# SPLL_Init: running as Slave, 1 ref channels, 2 out channels

Enabling ptracker channel: 0

(...)

Now you should have the White Rabbit PTP Core running in WR Slave mode. The Shell also
contains the monitoring function which you can use to check the WR synchronization status:

wrc# gui

The information is presented in a clear, auto-refreshing screen:

Chapter 4: Troubleshooting 7

Note: the Synchronization status and Timing parameters in gui are available only in WR Slave
mode. When running as WR Master, you would be able to see only the current date and time,
link status, Tx and Rx packet counters, lock and calibration status.

If you have a DIO Mezzanine board placed on your SPEC, you can check the synchronization
quality by observing the difference between 1-PPS signals from the WR Master and WR Slave.
White Rabbit PTP Core generates 1-PPS signal to the LEMO connector No. 1 on DIO Mez-
zanine. However, please remember to use oscilloscope cables having the same length and type
(with the same delay), or take their delay difference into account in your measurements.

4 Troubleshooting

My computer hangs on loading spec.ko driver.

This will occur when you try to load the spec.ko kernel driver while your spec-vuart is running
and trying to get messages from Virtual-UART’s registers inside WRPC. Please remember to
quit spec-vuart before reloading the driver.

I want to synthesize WRPC but hdlmake does nothing, just quits without any message.

Please check if you have the Xilinx ISE-related system variables set correctly (settings32.sh
script provided by Xilinx sets them) and make sure you have overwritten the $XILINX variable
to:

$ export XILINX=/opt/Xilinx/<version>/ISE_DS

or similar, if your installation folder differs from default.

WR PTP Core seems to work but I observe on my oscilloscope that the offset between 1-PPS
signals from WR Master and WR Slave is more than 1 ns.

Run the t2/t4 phase transition value measurement procedure from the WRPC Shell:

wrc# ptp stop

wrc# calibration force

and check if the oscilloscope cables you use have the same delays (or take the delay difference
into account in your measurements).

I can see in the WRPC GUI that the servo cannot reach TRACK PHASE state.

Chapter 5: Questions, reporting bugs 8

Please stop the PTP daemon on your SPEC, read your SFP’s parameters from SFP database
you have created in EEPROM and run the t2/t4 phase transition value measurement procedure
form WRPC Shell:

wrc# ptp stop

wrc# sfp detect

wrc# sfp match

wrc# calibration force

5 Questions, reporting bugs

If you have found a bug, you have problems with White Rabbit PTP Core or one of the tools
used to build and run it, you can write to our mailing list white-rabit-dev@ohwr.org

Appendix A: WRPC Shell Commands 9

Appendix A WRPC Shell Commands

pll init <mode> <ref_channel> <align_pps> manually run spll init() function to initialize
SoftPll

pll cl <channel> check if SoftPLL is locked for the channel
pll sps <channel> <picoseconds> set phase shift for the channel
pll gps <channel> get current and target phase shift for the

channel

pll start <channel> start SoftPLL for the channel
pll stop <channel> stop SoftPLL for the channel
pll sdac <index> <val> set the dac
pll gdac <index> get dac’s value

gui starts GUI WRPC monitor

stat prints one line log message
stat cont prints log message for each second (Esc to exit

back to shell)

ptp start start WR PTP daemon
ptp stop stops WR PTP daemon

mode prints available WR PTP modes
mode grandmaster sets WRPC to operate as Grandmaster

clock (requires external 10MHz and 1-PPS
reference)(*)

mode master sets WRPC to operate as Free-running
Master(*)

mode slave sets WRPC to operate as Slave node(*)

calibration tries to read t2/4 phase transition from EEP-
ROM, if not found runs calibration procedure

calibration force starts calibration procedure that measures
t2/4 phase transition, and stores the result
to EEPROM

time prints current time from WRPC
time raw prints current time in a raw format (seconds,

nanoseconds)

time set <sec> <nsec> sets WRPC time

sfp detect prints the ID of currently used SFP
transceiver

sfp erase cleans the SFP database stored in FMC
EEPROM

sfp add <ID> <deltaTx> <deltaRx> <alpha> stores calibration parameters for SFP to the
database in FMC EEPROM

sfp show prints all SFP transceivers stored in database
sfp match tries to get calibration parameters from data-

base for currently used SFP transceiver(**)

Appendix A: WRPC Shell Commands 10

init erase cleans initialization script in FMC EEPROM
init add <cmd> adds shell command at the end of initializa-

tion script

init show prints all commands from the script stored in
EEPROM

init boot executes the script stored in FMC EEPROM
(the same action is done automatically when
WRPC starts after resetting LM32)

mac get prints WRPC’s MAC address
mac getp re-generates MAC address from 1-wire digital

thermometer or EEPROM

mac set <mac> sets the MAC address of WRPC
mac setp <mac> sets MAC address to the 1-wire EEPROM (if

available)

sdb prints devices connected to the Wishbone bus
inside WRPC

ip get prints the IPv4 address of the WRPC(***)
ip set <ip> sets the IPv4 address of the WRPC(***)

* after executing mode command, ptp start is required to start WR PTP daemon in new
mode

** requires running sfp detect first

*** available only with Etherbone support compiled in

	Introduction
	Repositories and Releases
	Building the Core
	HDL synthesis
	LM32 software compilation

	Running and Configuring
	Downloading firmware to SPEC
	Writing EEPROM and calibration
	Running the Core

	Troubleshooting
	Questions, reporting bugs
	WRPC Shell Commands

