Open Hardware for Technology Transfer

Erik van der Bij, Javier Serrano et al.

BE-CO Hardware and Timing section CERN, Geneva, Switzerland

CERN BE-KT Day

Outline

Dopen Hardware

- Open Hardware Intro
- Open Hardware Repository
- CERN Open Hardware Licence

2 Case studies

- Case studies SPEC & ADC
- Experience with Industry

Outline

Dopen Hardware

- Open Hardware Intro
- Open Hardware Repository
- CERN Open Hardware Licence

Case studies

- Case studies SPEC & ADC
- Experience with Industry

Open	Hardware
0000	0000

Case studies

CERN Open products are real products Seven CERN designs commercialised by four companies

Erik van der Bij

Open Hardware for Technology Transfer

Why we use Open Hardware

Design re-use

When it's Open, people are more likely to re-use it: feedback.

Dissemination of knowledge

One of CERN's key missions!

Healthier relationship with companies

No vendor-locked situations. Companies selected solely on the basis of technical excellence, good support and price.

Spend money where you or your funding agencies want

Opens the door to smaller companies with local support.

Dispelling the commercial vs open myth

	Commercial	Non-commercial	
Open	Winning combination. Best of both worlds.	Whole support burden falls on developers. Not scalable.	
Proprietary	Vendor lock-in.	Dedicated non-reusable projects.	

CERN FMC projects in OHWR.org – some examples

FMC Carriers

- VME64x (BE/BI & BE/CO), VXS (BE/RF)
- PCIe (BE/CO), PXIe (EN/ICE & BE/CO), AMC (PH/ESE)

FMC Mezzanines

- ADC sampling speed: 100 MSPS
- TDC and Fine delay: 1 ns resolution
- Digital I/O: 5 channels

Stimulates collaboration between CERN groups

- VME64x: BE/BI & BE/CO
- TDC: TE/ABT, TE/CRG & BE/CO

FMC mezzanine: 5-channel 1ns TDC. Produced and sold in The Netherlands Joint development by TE/ABT, TE/CRG & BE/CO

Erik van der Bij Open Hardware for Technology Transfer

Open	Hardware
0000	0000

Case studies

SVEC - Simple VME FMC Carrier Produced and sold in Germany

Erik van der Bij Open Hardware for Technology Transfer

Open	Hardware
0000	0000

Case studies

Conclusions

FMC mezzanine: 4-channel Fine Delay Produced and sold in Spain

CERN Open Hardware License – ohwr.org/cernohl

Provides a solid legal basis

- Developed by Knowledge and Technology Transfer Group at CERN
- Open Software licences not usable (GNU, GPL, ...)
- Defines conditions of using and modifying licenced material

Practical: makes it easier to work with others

- Upfront clear that anything you give will be available to everyone
- Makes it clear that anyone can use it for free

CERN Open Hardware License – ohwr.org/cernohl

Same principles as Open Software

- Anyone can see the source (design documentation)
- Anyone is free to study, modify and share
- Any modification and distribution under same licence
- Persistence makes everyone profit from improvements

Hardware production

When produce: licensee is invited to inform the licensor

Outline

Open Hardware

- Open Hardware Intro
- Open Hardware Repository
- CERN Open Hardware Licence

2 Case studies

- Case studies SPEC & ADC
- Experience with Industry

Oþ	ben	Ha	rd	wa	re
00	boc	00	00		

Case studies ●○○○○○○○

Case study – SPEC: Simple PCI Express FMC carrier Made in Spain, The Netherlands & Poland

Case study – SPEC

Development

- Used a small Polish company to help with the design
- Review and quality documentation by CERN

Make it a testable product

Developed go/no-go test suite

First series of 70 boards (production, guarantee)

- Solid specification, IPC norms for PCB fab and assembly
- Price Enquiry to 7 companies having already PCIe products. First delivery in March 2012. Now 3 produce!
- CERN helped company to get quality right

Case study – SPEC

Users, incomplete list

- B-train system (CERN TE/MSC)
- CLIC Interlock System study (CERN TE-MPE)
- ATLAS Pixel IBL readout concept prototyping
- CNGS
- GEM detector readout (Creotech, PL)
- FAIR accelerator timing network (GSI)
- LHAASO telescope (Tsinghua University, China)
- Metrology Institutes for Time transfer (NL, UK, ...)
- Industry (isolated high-voltage measurement station, NL)

http://www.ohwr.org/projects/spec/wiki/Users

Case study – 100 MSPS 14-bit 4-channel ADC Made in The Netherlands

Case study – 100 MSPS 14-bit 4-channel ADC

Design

- Design by CERN student
- A small specialist company designed the front-end
- Reviews at CERN
- Design process well documented (mails, documents)

CERN Price Enquiry for 40 boards (production, guarantee)

- Price Enquiry to five companies that produce ADC boards
- Useful design feedback (schematics and PCB layout) from company. Delivered in April 2012.
- Company adapted the design for 2 new products

Case study – 100 MSPS 14-bit 4-channel ADC

Potential users

- BPM Linac4 (CERN BE/BI)
- Frame grabber for BSRT emittance meter (CERN BE/BI)
- PSB pick-ups (CERN BE/BI)
- Septum. Booster Trajectory Measurement (CERN TE/ABT)
- OASIS general purpose (CERN BE/CO)
- Italian Hadron Therapy Centre, BPM system (CNAO)
- Culham Centre for Fusion Energy (CCFE)
- ESS: European Spallations Source
- Advanced Photon Source (Argonne National Laboratory)
- Radio Telescope (Oregan State University)
- Industry: high-voltage measurement station

Experience with Industry May 2013

Companies used (usually paid for)

I5 European companies

Types of work

- Hardware: development, production
- Software: VHDL firmware, drivers
- Usually small projects (<2 months work), speeds up projects, gets in specialist knowledge
- Small companies can play a large role
- Production: follows CERN purchasing rules (competition)

Experience with Industry

Examples of re-use of work

- Two companies modified SPEC carrier design.
 - larger FPGA (for software radio), PXIe bus version
- A company modified ADC100M design.
 - other input filter, high-voltage front-end
- A company re-used nanoFIP code for renovating trains.

Generates interaction

- Companies work together building an ecosystem:
 - One sells a carrier, others sell mezzanines
 - One sells a WR switch, others sell WR nodes
- Once company makes its own designs available on OHR.
- Could negotiate component pricing for all partners.

Outline

Open Hardware

- Open Hardware Intro
- Open Hardware Repository
- CERN Open Hardware Licence

2 Case studies

- Case studies SPEC & ADC
- Experience with Industry

Open Hardware	Case studies

- Open Hardware has many advantages.
 - Anyone can help in developments and make improvements.
 - Allows to work differently with industry (design work, smaller companies).
 - Not tied to a single company for production and support.
- CERN Open Hardware Licence provides a legal basis.
- OHWR.org site is practical for engineers and users.
- Seven of CERN's designs are already commercialized.
- Companies receive new clients.
- Companies get knowledge of CERN (design, production).
- Companies use CERN designs to make new products.
- The scalable model attracts users to CERN technology.

CERN Open products are real products

CERN's use of the Open Hardware paradigm

generates technology transfer and stimulates innovation

Erik van der Bij Open Hardware for Technology Transfer