
Geneve, October 6-7, 2014

Generating gates from C: a test with PPSi

Fabrizio Ferrandi - Pietro Fezzardi

Politecnico di Milano
Dipartimento di Elettronica ed Informazione
fabrizio.ferrandi@elet.polimi.it pietrofezzardi@gmail.com

mailto:fabrizio.ferrandi@elet.polimi.it
mailto:pietrofezzardi@gmail.com

Geneve, October 6-7, 2014

Outline

 PandA framework

 High-level synthesis with bambu

 PPSi test

Geneve, October 6-7, 2014

Framework Overview

Geneve, October 6-7, 2014

High-Level Synthesis

 Design and implementation of a digital circuit starting from a behavioral
representation

 Different state-of-art algorithms have been implemented

Function allocation and sharing

Memory allocation

Bit-width analysis

Module allocation and binding

Register allocation and binding

Interconnection allocation and binding

Controller and Datapath generation

 The output is a synthesizable code in a common hardware description
language (e.g., Verilog, VHDL)

Geneve, October 6-7, 2014

General features of bambu

 Open source project: GPLv3 license

 ANSI C support

Complete with few exceptions: recursive functions

 Support of single and double precision floating point computation

 Unaligned memory accesses and dynamic pointers resolution

 GCC compilers supported: v4.5, v4.6, v4.7, v4.8 and v4.9

All gcc options can be passed to bambu

 Support of GCC vectorization

 Linux distributions supported:

Ubuntu 12.04LTS, 13.04, 13.10, 14.04LTS

Debian 7.3 (Wheezy), unstable (Sid)

CentOS/Scientific Linux

ArchLinux

Geneve, October 6-7, 2014

Functional resources

 Resource library composed of about 320 components

 155 components are actually templates:

Parametrizable with respect to the operation data sizes (8, 16, 32, 64)

 Several builtins are available:

exit, abort, printf, puts, putchar for debugging purposes

abs, memcpy, memset, memcmp, malloc, free

libm functions: sinf, cosf, cbrt, acosh, …

 Libm functions, malloc and free supported through a C based library

 Floating point modules generated by exploiting FloPoCo library or the
SoftFloat library

 Supported pipelined, multicycling and unbounded functional resources

 Different memory models

 Resource library described in XML or in C

Easily extendible

Geneve, October 6-7, 2014

Accelerator verification

 bambu HLS tool is able to pretty-print the IR as C code

 Direct execution of a program based on this code could be used to produce
expected functional values

 Simulation of the HDL description of the accelerator is done comparing the
expected results produced by the C code and the values obtained by the
hardware simulation

Testbench generation done automatically

Testbench generation could be customized through XML files

 Hardware simulators currently supported

ICARUS Verilog: http://iverilog.icarus.com/ (free sw)

VERILATOR: http://www.veripool.org/wiki/verilator (free sw)

ISIM: Xilinx Simulator

XSIM: Xilinx Simulator

Modelsim from Mentor

http://iverilog.icarus.com/
http://iverilog.icarus.com/
http://www.veripool.org/wiki/verilator
http://www.veripool.org/wiki/verilator

Geneve, October 6-7, 2014

Regression tests currently used

 CHStone http://www.ertl.jp/chstone/

DFADD, DFMUL, DFDIV, DFSIN: Double-precision floating-point

MIPS: Simplified MIPS processor

ADPCM: Adaptive differential pulse code modulation decoder and
encoder

GSM: Linear predictive coding analysis of global system for mobile
communications

JPEG: JPEG image decompression

MOTION: Motion vector decoding of the MPEG-2

AES: Advanced encryption standard

BLOWFISH: Data encryption standard

SHA: Secure hash algorithm

 Subset of GCC regression suite: 800

Geneve, October 6-7, 2014

Accelerators synthesis

 Automatic generation of synthesis scripts based on XML configuration for
different tool flows:

 FPGA:

Xilinx ISE

Xilinx VIVADO

Altera Quartus

Lattice Diamond

 ASIC

Synopsys Design Compiler

Geneve, October 6-7, 2014

PPSi test

Geneve, October 6-7, 2014

THE ORIGINAL IDEA

 Try out HLS with PPSi, to see if and how it could be replaced by HW
accelerators:

System is predictable

System latency is deterministic

Easier to design than a HDL based project

 Ignore UI and WR support to make things easier at an initial stage.

 Original C code size:

 standard PTP state machine 2130 lines

 arch-wrpc 454 lines

 time-wrpc 203 lines

 headers 1232 lines

 Total ~4000 lines

Geneve, October 6-7, 2014

FIRST PROBLEMS

 As we proceeded in the work, it turned out we needed to include more and
more wrpc-sw stuff to make things work properly.

 SOLUTION: use HLS on the whole wrpc-sw + ppsi.

 GOAL: produce a design for an FPGA block acting as wrpc-sw + ppsi. This
would allow to build a full HW core not relying on an external processor
(e.g., LM32, etc.)

 We didn't expect the resulting synthesis to be smaller than the LM32.

 The aim was to show a new possible design approach.

 There would have been time for optimization later.

Geneve, October 6-7, 2014

THE FINAL CODEBASE

 from PPSi:

 standard PTP state machine 2130 lines

 WRPTP state machine 1537 lines

 arch-wrpc + time-wrpc 657 lines

 headers ~1200 lines

 total ~5500 lines

 from wrpc-sw:

 softpll 1407 lines

 dev ~3000 lines

 headers ~3000 lines

 total ~7400 lines

 wrpc-sw + PPSi = ~12900 lines of C code

 WHAT STAYS OUT: printf, diagnostics, uart, shell and any other UI. ptp-no-
posix support. new sdb-lib in wrpc-sw.

Geneve, October 6-7, 2014

WORKING WITH PANDA

 PandA does not support all the features of C language yet:
 bitfields

 function pointers

 recursive functions

 forward declarations of data structures

 struct returned by copy

 Not available in PPSi and wrpc-sw

 little-endian operations (abs(), noths(), ntohl(), htons(), htonl())

 PandA specifically needs definitions in C for every function it uses

 Namely we had to add C definitions for:

 __builtin_swap32()

 strcpy()

 empty stubs for irq_enable() and irq_disable()

Geneve, October 6-7, 2014

RESULTS

 The work took two man-weeks, including fixes to bugs discovered in PandA, PPSi and
wrpc-sw during the development

 Most time was spent to find out that we had to synthesize all wrpc-sw + PPSi, then
rewriting some functions in the codebase to make the code more amenable for
synthesis with PandA/bambu.

 Four types of FPGA considered: SPEC, SPEC100, Xilinx Zynq, Altera CycloneV

 Verilog code generated: around 136K Lines of Verilog Code

Geneve, October 6-7, 2014

SPECv4 results

 Slice Logic Utilization:

 Number of Slice Registers: 26782 out of 54576 49%

 Number of Slice LUTs: 45818 out of 27288 167% (*)

 Number used as Logic: 44739 out of 27288 163% (*)

 Number used as Memory: 1079 out of 6408 16%

 Number used as SRL: 1079

 Slice Logic Distribution:

 Number of LUT Flip Flop pairs used: 51017

 Number with an unused Flip Flop: 24235 out of 51017 47%

 Number with an unused LUT: 5199 out of 51017 10%

 Number of fully used LUT-FF pairs: 21583 out of 51017 42%

 Number of unique control sets: 660

 IO Utilization:

 Number of IOs: 194

 Number of bonded IOBs: 161 out of 296 54%

 Specific Feature Utilization:

 Number of BUFG/BUFGCTRLs: 1 out of 16 6%

 Number of DSP48A1s: 54 out of 58 93%

Geneve, October 6-7, 2014

Spec100 results

 Xilinx ISE based synthesis, version 14.7

Xilinx Spartan6 xc6slx100t-3fgg484

Area 42839 LUT/FF pairs

Design min period 11.778 ns

Design max frequency 84.9 MHz

Design slack -3.778 ns

Registers 31823

DSPs 29

RAMs 27224 bytes

HLS execution Time 151.1 seconds

Total Execution Time 15588.21 seconds

Geneve, October 6-7, 2014

A different architecture: Xilinx Zynq

Zynq-7000 AP SoC Block Diagram

Geneve, October 6-7, 2014

Zynq results

 Xilinx VIVADO RTL based synthesis, version 2014.2

Xilinx Zynq xc7z020-1clg484

Area 39272 LUT/FF pairs

Design min period 7.987 ns

Design max frequency 125.2 MHz

Design slack 0.013 ns

Registers 25165

DSPs 115

RAMs 27224 bytes

HLS execution Time 172.77 seconds

Total Execution Time 1774.03 seconds

Geneve, October 6-7, 2014

Cyclone V results

 Quartus II based synthesis, 13.0sp1

Altera CycloneV 5CSEMA5F31C6

Area 24415 ALM

Design min period 8.983 ns

Design max frequency 111.32 MHz

Design slack -0.983 ns

Registers 27902

DSPs 82

RAMs 27224 bytes

HLS execution Time 165.12 seconds

Total Execution Time 2145.29 seconds

Geneve, October 6-7, 2014

What about HLS Commercial tool?

 It stops on this function:

static int wrap_copy_out(struct sockq *q, void *src, size_t len)

{

 char *sptr = src;

 int i = len;

 TRACE_WRAP("copy_out: head %d avail %d len %d\n", q->head, q->avail,

 len);

 while (i--) {

 q->buf[q->head++] = *sptr++;

 if (q->head == NET_SKBUF_SIZE)

 q->head = 0;

 }

 return len;

}

Geneve, October 6-7, 2014

THANK YOU!

GPL v3 source code available at

http://panda.dei.polimi.it

