
THE WHITE RABBIT PROJECT

J. Serrano, M. Cattin, E. Gousiou, E. van der Bij, T. Włostowski, CERN, Geneva, Switzerland

G. Daniluk, AGH University of Science and Technology, Krakow, Poland

M. Lipiński, Warsaw University of Technology, Warsaw, Poland

Abstract

White Rabbit (WR) is a multi-laboratory, multi-

company collaboration for the development of a new

Ethernet-based technology which ensures sub-nanosecond

synchronisation and deterministic data transfer. The

project uses an open source paradigm for the development

of its hardware, gateware and software components. This

article provides an introduction to the technical choices and

an explanation of the basic principles underlying WR. It

then describes some possible applications and the current

status of the project. Finally, it provides insight on current

developments and future plans.

INTRODUCTION

The White Rabbit (WR) project [1] was initiated at

CERN in 2008 to start preparing the evolution of the Gen-

eral Machine Timing (GMT) system. The GMT is based

on uni-directional 500 kb/s RS422 links, and allows oper-

ators and other users to synchronise different processes in

CERN’s accelerator network. The system has a number of

shortcomings though, among which the most important are

the limited bandwidth and the impossibility of dynamically

evaluating the delay induced by the data links.

WR started with the following specifications:

• Transfer of a time reference from a central location to

many destinations with an accuracy better than 1 ns

and a precision better than 50 ps.

• Ability to service more than 1000 nodes.

• Ability to cover distances of the order of 10 km.

• Data transfer from a central controller to many nodes

with a guaranteed upper bound in latency.

One of the main aims of the project is to deliver the

above functionality while using – or extending where

needed – existing standards. Ethernet was chosen as the

physical layer for all data transmission. The most pre-

cise standard synchronisation method for Ethernet net-

works is the Precise Time Protocol (PTP), standardised as

IEEE 1588. With PTP it is possible to synchronise stations

with an accuracy in the order of 1 µs. WR extends PTP in

a backwards-compatible way to achieve sub-ns accuracy.

Fig. 1 shows the layout of a typical WR network. Data-

wise it is a standard Ethernet switched network, i.e. there

is no hierarchy. Any node can talk to any other node. Re-

garding synchronisation, there is a hierarchy established by

the fact that switches have downlink and uplink ports. A

switch uses its downlink ports to connect to uplink ports

of other switches and discipline their time. The uppermost

switch in the hierarchy receives its notion of time through

external TTL Pulse Per Second (PPS) and 10 MHz inputs,

along with a time code to initialise its internal International

Atomic Time (TAI) counter.

Figure 1: Layout of a typical WR network.

WR switches allow users to build highly deterministic

data networks by having different internal queues for Eth-

ernet frames of different priorities, as established by the

priority header defined in IEEE 802.1Q. The combination

of deterministic latencies and a common notion of time to

within 1 ns allows WR to be a suitable technology to solve

many problems in distributed real-time controls and data

acquisition. The following section describes the technolo-

gies used to cope with the synchronisation requirements in

WR.

TECHNOLOGIES

The three key technologies used in WR to achieve sub-ns

accuracy in synchronisation are PTP, layer-1 syntonization

and precise phase measurements. In the following para-

graphs, we describe each one in turn.

Precise Time Protocol

The IEEE 1588 standard specifies a way to evaluate the

link delay between two nodes – one master and one slave –

through the exchange of time-tagged messages. Fig. 2

shows a simplified view of these exchanges.

The master node sends an initial message to the slave

and stamps it with a time-stamp t1 as it goes out of its net-

working interface. The message is received at a time t2 in

the slave’s time base. The process is then reversed, with

a new message sent from the slave at time t3 and received

in the master at time t4. Assuming that the one-way delay

through the network is exactly half of the two-way delay



Master
time

Slave
time

Announce

Sync

Delay_Req

Follow_Up

Delay_Resp

Management

t
1

t
2

t
3

t
4

Figure 2: Simplified PTP message exchange diagram.

– an assumption which is never completely accurate – the

one-way delay can be estimated as:

δ =
(t4 − t1)− (t3 − t2)

2
(1)

Typical PTP implementations use free-running oscilla-

tors in each node. This means that there will be a grow-

ing time drift between master and slave unless the message

exchange and calculation of δ happen repeatedly. Even if

there is such a continuous exchange of messages, the time

bases will drift during the time interval between two cal-

culations of δ. WR nodes extract the clock signal from the

incoming data stream, through a mechanism called “layer-

1 syntonization”. This results in equal clock frequencies in

all nodes, therefore eliminating the drift problem present in

typical PTP implementations.

Layer-1 Syntonization

In WR, as in the ITU-T Synchronous Ethernet standard,

the mechanism used to guarantee that all nodes are clocked

at the same frequency works at the level of the physical

layer, with no impact whatsoever on data traffic. WR cur-

rently supports Gigabit Ethernet (GbE) on fibre only. In

GbE, the link is never idle. Even if a node has nothing to

transmit, its Medium Access Control (MAC) block gener-

ates special 8B10B patterns called commas, whose purpose

is to avoid unlocking of the Phase Locked Loop (PLL) on

the Clock and Data Recovery (CDR) circuit in the receive

(RX) path of the node connected to it. Commas also help

in aligning the serial-to-parallel converter on the receiving

node.

Fig. 3 depicts the mechanism of layer-1 syntonization.

In standard Ethernet, each node uses its own free-running

clock to encode the messages it sends to the node on the op-

posite side of the link. By contrast, a network using layer-

1 syntonization establishes a clocking hierarchy, whereby

there is one master node or switch. All other nodes and

switches extract their clock signals from data streams, in

such a way that all of the system clocks of nodes and

switches on the network end up beating at exactly the same

rate. Switches play a key role in this frequency distribution,

by extracting the clock from the data stream going into one

of their ports (uplink port) and using that extracted clock

in the encoding of all data streams going out of all ports

(uplink and downlinks).

Figure 3: Simple illustration of layer-1 syntonization.

Precise Phase Measurement

As we saw in the preceding paragraph, a downlink port

of a switch disciplines the frequency of a downstream

switch by connecting to its uplink port. The downstream

switch, in turn, uses this extracted clock to encode the data

which it sends back to the upstream switch. In this way, the

upstream switch finds a delayed copy of its encoding clock

in the output of the CDR circuit in its RX path, as depicted

in Fig. 4. The phase shift between these two clock signals

is directly related to the link delay, and a measurement of

this phase difference can therefore be incorporated into the

PTP equation in order to achieve better precision.

Figure 4: Phase tracking block diagram.

In addition, a phase-shifting circuit can be included in

the slave node to create a phase-compensated clock signal,

i.e. a clock signal which is in phase with the master clock

signal despite the delay introduced by the fibre link. The

delay programmed into this phase shifter at any given time

is of course taken into account when calculating the link

delay.

The introduction of layer-1 syntonization and phase

tracking provides a synchronisation mechanism which can

potentially be completely independent of the data link

layer. Beyond the first PTP message exchange, there is in

principle no need to continue exchanging messages to keep

the nodes synchronised. In practice, WR keeps the PTP

messages going for robustness reasons, albeit at a much re-

duced rate. This makes the PTP traffic negligible in terms



of bandwidth, therefore not getting in the way of determin-

ism for the user frames, another key requirement for WR.

Layer-1 syntonization also allows to cast the time-

stamping problem into a phase measurement problem,

which increases precision since phase measurement can be

done much more precisely than measuring time intervals.

The circuit we use for measuring phases, called Digital

DMTD (Dual Mixer Time Difference), is depicted in Fig. 5.

Figure 5: Digital DMTD circuit.

The flip-flops (FFs) in this digital implementation play

the role of the mixers in the original DMTD circuit [2].

This circuit measures the phase difference between two

clock signals, clkA and clkB, which have the same nom-

inal frequency. A PLL is used to generate a third clock

signal, very close but not quite at the same frequency as

clkA and clkB . The FFs sample the two incoming signals

with this synthesised clock signal. Since the sampling fre-

quency is very close to that of the incoming signals, very

low frequency waveforms result at the outputs of the FFs.

There are some glitches in the edges of these low-frequency

square waves as a result of the very slow sweeping and the

jitter in the incoming signals. The slow sweeping – equiva-

lent to the low-frequency beat in the analogue version of the

circuit – provides a magnifying effect. Tiny phase differ-

ences in the input signals become readily measurable time

intervals after sampling and cleaning up the glitches. The

circuit is fully digital and extremely linear. This circuit is

used as a phase detector in the master and as part of the

phase shifter in the slave. Indeed, one can build a very

linear phase shifter by using this phase detector in a loop,

and having a non-linear phase shifter shift the phase until

the linear phase detector signals the nominal phase shift is

attained.

THE WHITE RABBIT SWITCH

WR is a switched network. At its heart lies its most

important component: the WR switch, which provides 18

ports in a 1U 19” rackable enclosure. It is made of open

source hardware, gateware and software, and it is sold and

supported by a commercial company. WR switches are

fully compatible with Ethernet, and can identify if a WR

node or another WR switch is hooked to one of their ports

by using the WR extension [3] to the IEEE 1588 protocol

at link establishment time. This extension is also designed

to be backwards-compatible with standard PTP, so it is pos-

sible to connect existing PTP gear to a network made with

WR switches, along with WR nodes. In this case, the WR

nodes will benefit from the extension and therefore achieve

better accuracy, while the standard PTP nodes will run only

the standard protocol and feature reduced accuracy.

Architecture

Fig. 6 shows a high-level block diagram of the WR

switch. Ethernet frames are exchanged through 18 ports

equipped with Small Form-factor Pluggable (SFP) sockets

which can host optical transceivers. The reference imple-

mentation uses SFP modules for one single mode fibre, us-

ing one wavelength for TX traffic and a different one for

RX. The use of a single fibre ensures that the symmetry in

TX and RX paths – after mathematically compensating for

fibre dispersion – is robust, in particular against changes in

cabling not notified to the final user. The SFPs are con-

nected directly to a Xilinx Virtex-6 Field Programmable

Gate Array (FPGA).

Figure 6: High-level block diagram of the WR switch.

Ethernet frames get switched inside the FPGA with very

low latency. An ARM CPU running Linux helps with

less time-sensitive processes like remote management and

keeping the frame filtering database in the FPGA up to date.

The clocking resources block contains PLLs for cleaning

up and phase-compensating the system clock, as well as

for generating the frequency-offset DMTD clock.

FPGA Design

Fig. 7 shows a block diagram of the internals of the

FPGA in the switch. Blocks under development are shown

in white boxes with grey borders, and will be discussed

in another section. The current release, without those

blocks, is fully operational. The design consists of Hard-

ware Description Language (HDL) cores around a Wish-

bone bus [4] interconnect.

There are 18 Endpoint blocks, each connected to an SFP

in the switch. They send and receive Ethernet frames using

the switching core (SwCore) to communicate with one an-

other. The decision as to where a frame is destined is taken

by a forwarding process in the Routing Table Unit (RTU).



Figure 7: Block diagram of the FPGA design in the WR

switch.

The choice of the word “routing” here is a bit unfortunate

since we are speaking about layer-2 forwarding, not layer-3

routing.

All traffic to and from the ARM CPU goes through the

CPU EBI/WB bridge. This interface is e.g. used to keep the

database up to date in the RTU. The ARM CPU itself can

be a source or sink for Ethernet frames, using the Network

Interface Card (NIC) and the Vector Interrupt Controller

(VIC) blocks in the FPGA. The ARM CPU also runs the

PTP stack for the switch, and reads the time stamps for

outgoing frames from the TX Time Stamp Unit (TX TSU).

The Real Time (RT) subsystem block is responsible

for timekeeping in the switch. It contains an LM32 soft

CPU running a soft PLL which controls the various pro-

grammable oscillators in the switch. In addition, it hosts

the counters for the current TAI.

The Hardware Info Unit (HWIU) contains important in-

formation about the global HDL design itself, such as the

HDL commit hash in the Git repository and the date of the

synthesis. The I2C, GPIO and PWM blocks control other

peripherals on the switch, such as LEDs and the cooling

fans.

Performance

In order to characterise the performance of the WR

switches, a system was set up in a laboratory consisting of

four cascaded WR switches. The master switch was con-

nected to a first slave switch through a 5 km fibre roll. Sim-

ilar fibre rolls were used to connect the first switch to the

second one, and then the second one to the third one, for a

total of 15 km of fibre. Adverse conditions were simulated

by heating the fibre rolls with a hot air gun.

Since the four switches were all in the same laboratory, it

was easy to monitor their PPS outputs with an oscilloscope

and draw histograms of the offsets between the PPS output

in each switch and the PPS output in the master switch. The

results of these measurements can be seen in Fig. 8.

As can be seen in the plots, accuracy always stays within

± 200 ps, and typical precisions are in the order of 6 ps.

Figure 8: Histograms of PPS output offsets of three cas-

caded WR switches with respect to the PPS pulse output in

the master switch.

The same type of accuracy and precision is found with WR

nodes, since the technologies involved for delay measure-

ment and compensation are exactly the same as those used

in the switches.

WHITE RABBIT NODES

Fig. 9 shows a simplified block diagram for a WR node

based on the Simple PCI Express Carrier (SPEC) board [5].

This card can host mezzanines conforming to the FPGA

Mezzanine Card (FMC) VITA 57 standard. We have de-

veloped Analogue to Digital Converter (ADC), Time-to-

Digital Converter (TDC) and programmable delay genera-

tor FMCs. By plugging these cards in a WR-enabled car-

rier such as the SPEC, and appropriately configuring the

FPGA in the carrier board, one can enhance their function-

ality with features such as synchronous sampling clocks in

remote nodes and precise TAI time stamps.

Figure 9: An example WR node.

In order to enable users to easily build nodes for WR-

based applications, we have developed a core which takes

care of all WR data transmission and reception, along with

all synchronisation tasks. This WR PTP Core (WRPC) [6]



– an Ethernet Medium Access Control (MAC) unit with en-

hancements for timing – contains an LM32 soft CPU inside

which runs the whole PTP stack. Frames which are iden-

tified as non-PTP are forwarded downstream to the user

logic. Conversely, the core also accepts frames from user

logic, which can for example be used to stream data ac-

quired in an ADC FMC. The WRPC takes care of control-

ling the programmable oscillators on the SPEC or any other

WR-enabled board. An Etherbone slave core [7] can op-

tionally be instantiated between the WRPC and the user

logic. Etherbone is an independent project led by GSI

which can work in conjunction with any Ethernet MAC

core, not necessarily with the WRPC. It aims at provid-

ing a way to trigger reads and writes in a remote Wishbone

bus through carefully defined payloads in an Internet Pro-

tocol (IP) packet. With Etherbone, a complete network of

sensors and actuators looks like a big memory map to a

master/management node.

WR-capable nodes have been designed in PCIe, PXIe,

VME64x and µTCA form factors. These designs have

varying degrees of maturity and commercial support. The

most mature one is the PCIe SPEC board, and different

WR-based gateware designs have been successfully tar-

geted at it, including a Network Interface Card with a Linux

network device driver.

APPLICATION EXAMPLES

WR technology provides users with a common notion

of TAI in every node and with a deterministic network in

which an upper bound for latencies is guaranteed by design.

This opens up many possibilities in different fields, such as

Multiple Input Multiple Output (MIMO) feedback systems.

In this section, we describe just two of the multiple possible

applications of WR.

RF Distribution

WR distributes a 125 MHz clock – typically TAI-

related – for free. A WR user gets access to this clock, or

derivatives of it, just by hooking a WR node to a WR net-

work. However, in some cases users care more about syn-

chronising to Radio Frequency (RF) signals related to e.g.

the accelerating structures in a particle accelerator. Gener-

ating phase-compensated RF signals in different locations

can be useful in other domains as well, such as in radar

applications.

Fig. 10 shows a block diagram of how one can use a WR

network to distribute RF clocks, through a scheme called

Distributed Direct Digital Synthesis (Distributed DDS or

D3S).

The reference clock line in the drawing is just concep-

tual. Nodes get the reference clock from the WR network

itself. There is no need for additional connections. The

transmitting node tracks an RF signal connected to its in-

put with a PLL in which the role of the voltage-controlled

oscillator is fulfilled by a DDS block. The control words

for that DDS, along with the TAI at which they were ap-

plied, are encoded and broadcast through the WR network.

Figure 10: Distributed DDS in a WR network.

Receiving nodes can then apply a fixed offset to the TAI

stamps and replay the RF waveform with their local DDS

blocks, with just a fixed delay. In most situations the RF is

stable enough for this fixed delay to be of no concern.

This scheme has several advantages over traditional RF

distribution systems. There is no additional cabling to

be done. The same network can handle more than one

distributed RF. In addition, all waveforms are played us-

ing a TAI-related clock, which is very useful for diagnos-

tics. A first crude implementation has been demonstrated

at CERN, with a jitter – defined here as the integral of the

Power Spectral Density of the phase noise, integrating be-

tween 10 Hz and 5 MHz – in the replayed RF below 10 ps.

Better jitter can be achieved by carefully tuning the digi-

tal PLL filter and cleaning the output of the DDS with an

analogue PLL including a low phase noise oscillator.

Distributed Oscilloscope

Fig. 11 shows a conceptual representation of a dis-

tributed oscilloscope using several of the building blocks

we have described so far.

Figure 11: Distributed oscilloscope using a WR network.

ADC nodes sample analogue signals synchronously in

remote locations. The synchronous phase-compensated

sampling is facilitated by the WR-derived clock. The

ADCs can store their samples in rolling buffers, where each

location is known to contain the sample corresponding to a

precise TAI. As soon as an ADC node detects a condition

upon which it should trigger, it can broadcast a trigger mes-

sage through the WR network. All nodes will have received

that message after a guaranteed worst-case delay. These

nodes can then stop sampling and rewind their buffers to

the TAI specified in the triggering message. External trig-

ger pulses can also be accommodated through the use of

TDC nodes, and sampling with non-TAI-related clocks can

be done using D3S nodes.



A computer in the control room then gets all the TAI-

stamped acquisition data and displays it coherently on a

single screen. The operators then see this whole distributed

system as a simple oscilloscope to which all their signals

are connected. This would of course be impossible with

a real oscilloscope, but it can be done with WR’s phase-

compensated distribution of TAI, appropriate WR-enabled

nodes and software.

THE WR COMMUNITY

The WR project is a distributed endeavour whose collab-

orative model is heavily inspired by that typically used in

Free/Open Source software projects. All the intermediate

and final results in the project are made available through

open source licences. We use mostly the GNU General

Public License (GPL) and the GNU Lesser General Public

License (LGPL) for licensing software, LGPL for gateware

(HDL files) and the CERN Open Hardware Licence [8] for

hardware designs.

WR users are very often developers and vice versa. The

ever-growing list of interested institutes and companies [9]

has enlarged the scope of the project well beyond the origi-

nal domain of particle accelerators. At CERN, the effort of

dissemination for this technology has been coordinated in

collaboration with the Knowledge Transfer Group.

Thanks to its open nature, the project has benefited from

extensive contributions and ideas of potential and con-

firmed users. These exchanges typically happen on the

project mailing list, which is web-archived and integrated

with the project website [1]. Peer review over email or in

dedicated workshops establishes a meritocracy in which the

best ideas move forward. Openness is also key in avoiding

potential vendor lock-in situations and welcoming com-

mercial partners as any other contributor.

PROJECT STATUS AND OUTLOOK

At the time of this writing (August 2013) the WR switch

is a mature commercially-supported hardware product with

a stable release for its gateware and software. WR nodes

have been designed and validated in a variety of formats,

and they have consistently shown sub-ns synchronisation

accuracy. This section provides a quick overview of some

of the most important upcoming efforts in the project.

Synchronisation Performance

The results in Fig. 8 show that the original goals for WR

in terms of synchronisation have been achieved. In some

applications though, it is important to improve accuracy as

much as possible. While the WR delay model [10] and

compensation mechanism cover changes in fibre temper-

ature appropriately, they do not compensate for the delay

fluctuations induced by temperature variations in the nodes

and switches themselves. We believe these effects can ac-

count for tens of picoseconds or even more in particularly

adverse circumstances.

Tests in a climatic chamber [11] have shown that the de-

pendency of delay with respect to temperature is mostly

linear, so an evolution of the WR delay compensation algo-

rithm which takes into account on-board temperature mea-

surements should help in this respect. The modified algo-

rithm could include a linear model of the dependency or a

table of delay vs. temperature values resulting from offline

calibration.

Switch Evolution

The efforts on switch gateware and software will go in

the direction of providing better support for remote man-

agement, diagnostics and robust data transmission in a WR

network.

A Port Statistics block (Pstats, see Fig. 7) will be added

to provide counts of transmitted, received and dropped

frames per port, along with other counts relevant for as-

certaining the state of health of the network. A Time-

Aware Traffic Shaper Unit (TATSU) will allow blocking

selected output queues for some time so that high-priority

frames can go through the switch without colliding with

low-priority frames being sent at that moment through a

port. This will avoid having to wait until the end of trans-

mission of those frames before taking ownership of the

port.

In addition, a Topology Resolution Unit (TRU) will

add hardware support to the process of providing redun-

dant loop-free topologies for a network. This will result

in a faster topology switch-over compared to traditional

software-based methods such as the Rapid Spanning Tree

Protocol (RSTP). Fig. 12 illustrates why fast switch-over

can be important in a WR network.

Figure 12: Forward Error Correction used to correct for

frame loss.

In this example, a WR node decomposes a control mes-

sage into four Ethernet frames which have been encoded

using Forward Error Correction (FEC), in such a way that

receiving any two of those frames allows the receiving node

to re-constitute the original control message. The use of

this type of FEC scheme is well adapted to networks in

which a late frame is a wrong frame, such as the one used

for accelerator timing at CERN. This precludes the use of

protocols which require re-trials in case of transmission er-

rors, such as the Transmission Control Protocol (TCP).

If the switch can enable a redundant port very quickly

after detecting a fatal condition in another port, and if the

switch-over time is lower than that corresponding to the

transmission of one of the frames in the figure, the receiv-

ing node will be able to re-constitute the message with the

remaining frames. Tests at CERN have shown that this kind



of switch-over speeds are indeed possible with appropriate

hardware support.

On the software front, most of the activity will be fo-

cused on providing the switch with good Simple Network

Management Protocol (SNMP) support so that all control

and diagnostics can happen remotely using standard switch

management software. Another important development

will be the replacement of the current PTP stack running

in the ARM processor by the PTP Ported to Silicon (PPSi)

stack. PPSi [12] is a portable PTP daemon which can be

targeted at bare-metal systems, such as the LM32 proces-

sor inside the WRPC in the WR nodes, but can also run

under an operating system, such as the Linux running in

the ARM processor in the switch. PPSi has been devel-

oped in the frame of the WR project but can be used in any

project requiring PTP support. It is licensed under LGPL.

Standardisation

Using standards is good for many reasons. A standard is

more likely to be used for a long time, so using it reduces

long-term risks. Standardisation bodies typically invest a

big effort in making sure standards are robust, so adopting

them also saves time. Finally, companies are more inclined

to participate in a development project if it is based on stan-

dards, because markets are typically larger in that case and

also because the rules of governance and evolution of the

standard are clear from the outset.

In WR, we are developing functionality which is not

made available by any existing standard. However, it

was felt from the beginning of the project that WR ideas

could constitute the basis for the evolution of the IEEE

1588 standard. The original WR specification was already

worded with this in mind. Now the IEEE P1588 Working

Group [13] has opened the process for the periodic revi-

sion of the standard, and the WR project is represented in

the subcommittee for high accuracy enhancements. The

aim of this effort for the WR team is to end up in a situ-

ation where WR is just a particularly accurate and precise

implementation of the IEEE 1588 standard. The work of

the subcommittee has just started, and the outlook is very

promising.

WR is also concerned with determinism, and the WR

team keeps an eye on the efforts of the Time Sensitive Net-

works (TSN) Task Group [14] inside the IEEE 802.1 Work-

ing Group. The ideas discussed in this Task Group are of

great relevance to WR. Conversely, the TRU and TATSU

blocks in Fig. 7 can be a very convenient testing ground for

these ideas.

ACKNOWLEDGEMENT

The authors acknowledge the contribution of the WR

community at large for collaborating in the development

of the technology, identifying and reporting bugs and ex-

tensively testing each release of hardware, gateware and

software. Authorship of this paper does not imply a claim

to more importance inside the project, but rather a privilege

to report on the results of the collective effort of the many

contributors to the project.

REFERENCES

[1] White Rabbit project website,

http://www.ohwr.org/projects/white-rabbit/wiki

[2] D.A. Howe et al,. “Properties of Signal Sources and Mea-

surement Methods,” Proceedings of the 35th Annual Sym-

posium on Frequency Control, 1981.

[3] M. Lipiński et al., “White Rabbit: a PTP Application for

Robust Sub-nanosecond Synchronization,” ISPCS 2011.

[4] Wishbone bus specification,

http://opencores.org/opencores,wishbone

[5] Simple PCI Express Carrier website,

http://www.ohwr.org/projects/spec/wiki

[6] WR PTP Core, http://www.ohwr.org/projects/

wr-cores/wiki/Wrpc core

[7] Etherbone Core project,

http://www.ohwr.org/projects/etherbone-core/wiki

[8] CERN Open Hardware Licence,

http://www.ohwr.org/cernohl

[9] WR users, http://www.ohwr.org/projects/

white-rabbit/wiki/WRUsers

[10] White Rabbit Specification,

http://www.ohwr.org/documents/160

[11] WR torture report,

http://www.ohwr.org/documents/190

[12] PPSi,

http://www.ohwr.org/projects/ppsi/wiki

[13] IEEE P1588 Working Group,

https://ieee-sa.centraldesktop.com/1588public

[14] Time-Sensitive Networks Task Group,

http://www.ieee802.org/1/pages/tsn.html


