
CONV-TTL-BLO HDL Guide

Gateware v2.00
October 30, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

04-07-2013 0.1 First draft
26-07-2013 0.2 Second draft
07-08-2013 1.02 Added pulse rejection to ctb pulse gen
14-08-2013 1.02 Changed name of elma i2c to vbcp wb
29-10-2013 2.00 Added MultiBoot support to firmware

Contents

Contents

1 Introduction 1

2 FPGA Clocks 1

3 Reset generator 2

4 RTM detection 3

5 Bicolor LED controller 4
5.1 Board-level view . 5

6 Pulse generator 6
6.1 Implementation . 6
6.2 Board-level view . 7

7 Memory-mapped peripherals 8
7.1 VBCP to Wishbone bridge 9
7.2 Control and status registers 9
7.3 MultiBoot control . 9

8 Folder Structure 9

9 Getting Around the Code 11

Appendices 13

A Memory map 13
A.1 Control and status registers 13

A.1.1 Board ID register . 13
A.1.2 Status register . 13

A.2 MultiBoot module . 14
A.2.1 CR – Control Register 15
A.2.2 IMGR – Image Register 15
A.2.3 GBBAR – Golden Bitstream Base Address Register . 16
A.2.4 MBBAR – MultiBoot Bitstream Base Address Register 16
A.2.5 FAR – Flash Access Register 17

i

List of Tables

List of Figures

1 Block diagram of FPGA firmware 1
2 FPGA clock inputs . 2
3 rtm detector block in CONV-TTL-BLO firmware 3
4 3x2 bicolor LED matrix control 4
5 Pulse generator block . 7
6 Board-level view of pulse replication mechanism 8
7 No signal detect block . 8
8 VHDL architecture . 11

List of Tables

1 Clock domains . 2
2 LED state input . 5
3 LED state vector connections in the firmware 5
4 CONV-TTL-BLO memory map 13

List of Abbreviations

DAC Digital-to-Analog Converter
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
IC Integrated Circuit
I2C Inter-Intergrated Circuit (bus)
PLL Phase-Locked Loop
SPI Serial Peripheral Interface
SysMon (ELMA) System Montior
VCXO Voltage-controlled oscillator

ii

2 FPGA Clocks

1 Introduction

This document details the HDL implemented on the Spartan-6 FPGA on
the CONV-TTL-BLO board. The HDL (mostly implemented in VHDL)
handles the following aspects of the CONV-TTL-BLO capabilities:

• pulse detection (on pulse rising edge)

• fixed-width pulse generation

• status retrieval via I2C and VBCP

• remote reprogramming via I2C and VBCP

Figure 1 shows a simplified block diagram of the HDL firmware. Each
of the blocks in the figure is presented in following sections.

6x pulse
generator

reset
generator

VBCP bridge

I2C
slave

WB
master

SCL
SDA

RTM detector

Status registersWishbone
crossbar

RTM detection
lines

TTL inputs

Blocking inputs

TTL outputs

Blocking outputs

Blocking power
supply reset

Bicolor LED
controller

Bicolor status
LEDs

INV-TTL inputs INV-TTL outputs

MultiBoot module
M25P32
SPI flash

Figure 1: Block diagram of FPGA firmware

Additional documentation

• CONV-TTL-BLO User Guide [1]

• CONV-TTL-BLO Hardware Guide [2]

2 FPGA Clocks

There are two clock signals input to the FPGA (Figure 2). The first is a
20 MHz signal from a VCXO. The second clock signal with a frequency of

1

3 Reset generator

FPGA

PLLIC13OSC1DACIC18

OSC3DACIC17

125MHz

20MHz

DACconfigurationandcontrol

DACconfigurationandcontrol

Figure 2: FPGA clock inputs

125 MHz is generated on-board via a Texas Instruments PLL IC from a
25 MHz VCXO.

Two DACs are provided on-board for controlling the two VCXOs. The
DACs can be controlled via SPI, but this feature is not yet implemented.

Table 1 lists the clock domains in the firmware.

Table 1: Clock domains
Clock domain Frequency Comments

clk125 125 MHz Global clock input to all sequential logic

3 Reset generator

Entity reset gen
Generics g reset time Reset time in clk i cycles
Ports clk i Clock signal

rst i Active-high reset input
rst n o Active-low reset output

Usage Global reset generation 96 ms reset

The reset generator module (reset gen) implemented inside the FPGA gen-
erates a predefined-width reset signal when power is applied to the FPGA,
or when an external reset is triggered via the rst i pin.

When a power-on reset occurs on the Xilinx FPGA, a counter inside
the reset gen module starts counting up. While this counter is counting up,
the active-low reset signal is kept low, resetting synchronous logic inside the
FPGA. When the counter reaches the value of the reset width (specified via
the g reset time generic at synthesis time), the reset signal is de-asserted,
the counter is disabled and the reset gen module remains inactive.

The module reactivates on the power-on reset, or when a reset is triggered
externally, via the rst i pin.

2

4 RTM detection

Note that the VHDL of this module is Xilinx and XST-specific and port-
ing to a different FPGA architecture is not guaranteed to provide the same
results. The reset gen module has an initial value set for the counter signal
after power-up, which is guaranteed by XST to be set after the FPGA’s
GSR signal is de-asserted.

By default, the reset time is set to 96 ms.

4 RTM detection

Entity rtm detector
Ports rtmm i(2..0) RTM mainboard detection lines

rtmp i(2..0) RTM piggyback detection lines
rtmm ok o RTM mainboard present
rtmp ok o RTM piggyback present

Usage Light ERR status LED

RTM detection is described in [3]. Since an RTMM/P missing would mean
all rtmm i/rtmp i lines are all-ones, the rtm detector module sets the rtmm ok
and rtmp ok signals low if the rtmm i and rtmp i input signals are respec-
tively all-ones.

The rtmm ok and rtmp ok signals are NANDed together to light the
ERR status LED on the CONV-TTL-BLO.

rtm_detector

rtmm_i

rtmp_i

rtmm_ok_o

rtmp_ok_o
set ERR LED

inverting signals
from Schmitt

triggers on board

Figure 3: rtm detector block in CONV-TTL-BLO firmware

The status of the RTM detection lines can also be read via their respec-
tive fields in the CONV board status register (Appendix A.1).

3

5 Bicolor LED controller

5 Bicolor LED controller

Entity bicolor led ctrl
Generics g NB COLUMN Number of columns

g NB LINE Number of lines
g CLK FREQ Frequency (in Hz) of clk i signal
g REFRESH RATE LED refresh rate (in Hz)

Ports rst n i Active-low reset input
clk i Clock signal input
led intensity i(6..0) 7-bit LED intensity vector
led state i(..) LED state vector, two bits per LED
column o(..) LED column vector, one bit per column
line o(..) LED line vector, one bit per line
line oen o(..) LED line enable vector, one bit per line

Usage Light bicolor LEDS

The bicolor led ctrl block controls the lighting of a bicolor LED matrix.
Based on the refresh rate given via the g REFRESH RATE generic, the
clock frequency (g CLK FREQ generic) and the number of lines and columns,
the module controls lighting each LED in the LED matrix.

Figure 4 shows an example of controlling a three-line, two-column red-
and-green LED matrix. The FPGA ouputs for the columns (C) are con-
nected to buffers and serial resistors and then to the LEDs. The FPGA
outputs for lines (L) are connected to tri-state buffers and the to the LEDs.
The FPGA outputs for line output enables (L OEN) are connected to the
output enable of the tri-state buffers.

Ln

L1_OEN

L2_OEN

L3_OEN

Cn

LED Ln/Cn OFF GREEN

Refresh period

RED ORANGE

R G R G

R G R G

R G R G

L1

L1_OEN

L2

L2_OEN

L3

L3_OEN

C1
C2

Figure 4: 3x2 bicolor LED matrix control

The two-bit led state i vector can be used to control the color of each
LED. Table 2 lists the values that should be input on led state i to get the
needed color. Definitions are provided in the bicolor led ctrl pkg.vhd file for
setting the color of the LED via led state i ; these constants are also listed
in Table 2.

4

5 Bicolor LED controller

Table 2: LED state input
State Constant Value

Off c LED OFF 00
Green c LED GREEN 01
Red c LED RED 10
Orange c LED RED ORANGE 11

Each LED’s two-bit state is connected to led state i on a column-first,
line-second basis.

5.1 Board-level view

There are twelve bicolor LEDs on the CONV-TTL-BLO; they are connected
in a two-line, six-column pattern controlled by a bicolor led ctrl block. Ta-
ble 3 shows the led state i connections for the bicolor status LEDs in the
CONV-TTL-BLO firmware.

Table 3: LED state vector connections in the firmware
Line Column LED LED state bits Setting

1 1 WHITE RABBIT ADDR 1..0
1 2 WHITE RABBIT GMT 3..2
1 3 WHITE RABBIT LINK 5..4
1 4 WHITE RABBIT OK 7..6
1 5 MULTICAST ADDR 1 9..8
1 6 MULTICAST ADDR 2 11..10
2 1 I2C 13..12
2 2 TTL 15..14
2 3 ERR 17..16
2 4 PW 19..18
2 5 MULTICAST ADDR 4 21..20
2 6 MULTICAST ADDR 8 23..22

The states of the used LEDs can be found in Table 1 of [1]. They
are controlled by combinatorial multiplexers. The selection signals to these
multiplexers are set throughout the logic.

5

6 Pulse generator

6 Pulse generator

Entity ctb pulse gen
Generics g pwidth Width of the output pulse in clk i cycles

g gf len Length of glitch filter
Ports clk i Clock signal

rst n i Active-low reset signal
en i Pulse generator enable
gf en n i Active-low glitch filter enable
trig i Pulse trigger
pulse o Pulse output

Usage Output pulse 1.2 µs pulses with min. period of 6 µs

The ctb pulse gen block generates pulses on the rising edge of the trig i
input. The pulse width is configurable via the g pwidth generic. The block
also incorporates a glitch filter with a configurable length (g gf len) that can
be used to avoid pulses generated because of glitches at the trig i input.

Pulse widths at the output are limited internally to 1/5 duty cycle, to
safeguard the blocking output transformers.

Six ctb pulse gen blocks (one per channel) are used for generating block-
ing and TTL pulses at the outputs, based on trigger inputs arriving on the
channels. The ctb pulse gen blocks are configured for 1.2 µs pulses (g pwidth
= 150, considering the 8 ns clock input).

6.1 Implementation

Figure 5 shows the implementation of the ctb pulse gen block. It employs a
finite-state machine (FSM) that is used to generate a fixed-width pulse at
the output.

The glitch filter can be used to decrease sensitivity to glitches in noisy
environments. It can be enabled via the gf en n i input (connected to SW1.1
on the CONV-TTL-BLO). The length of the filter can be set via the g gf len
generic.

Enabling the glitch filter will lead to the trigger being sampled using
clk125 and introduces leading-edge jitter on the pulse o output. To avoid
this leading-edge pulse jitter, the glitch filter can be left disabled.

Regardless of whether the glitch filter is enabled or not, the FSM reacts
to the rising edge of one of its two start inputs. A rising edge on an input
starts the internal counter, which counts up to a maximum value of g pwidth.
The behavior of the outputs are different, depending on the state of the glitch
filter.

With the glitch filter disabled, the input pulse enables the input flip-flop,
which starts pulse generation. The pulse signal is then synchronized in the
clk125 domain and input to the synchronous FSM, which extends the pulse

6

6 Pulse generator

trig_i

Q D

Q D

Q D

'1'

1

0

CLR

OGF1

OGF0

clk125

SGF0

pulse_o

FSM

SGF1

glitch filter

gf_en

SGF1 - Start when glitch filter is enabled
SGF0 - Start when glitch filter is disabled

OGF1 - Output when glitch filter is enabled
OGF0 - Output when glitch filter is disabled

Figure 5: Pulse generator block

to g pwidth. The rising edge on SGF0 triggers the counter, and when the
counter reaches the value corresponding to the selected pulse width, it sets
the OGF0 output, which will reset the input flip-flop, thus ending the pulse.

With the glitch filter enabled, the rising edge on SGF1 sets OGF1, and
this will be kept high until the counter reaches the value corresponding to
the pulse width.

After the pulse generation period, the FSM goes into a pulse rejection
state, where the pulse reset is kept high. If any pulses arrive on the input
while the FSM is in this rejection state, they are not replicated at the output.
The pulse rejection phase lasts for 4*g pwidth, yielding a maximum duty
cycle of 1/5 for input pulses.

6.2 Board-level view

Figure 6 shows the pulse replication mechanism on the CONV-TTL-BLO.
Here, the PG block is the ctb pulse gen block with the necessary settings.
Since the ctb pulse gen block expects a rising edge at its trig i input in order
to generate a pulse at the output, logic external to the block caters for the
different types of signals that arrive on CONV-TTL-BLO inputs.

Most of this external logic is on the TTL pulse side, where both TTL
and TTL-BAR pulses may arrive. As described in Section 4.3 of [1], if a
wire is not plugged in when TTL-BAR pulses are input, a continuous logic
high level on the line would inhibit pulses arriving on the blocking side from
triggering a pulse generation. This is why the no sig. detect block has been
implemented.

The block’s implementation is shown in Figure 7. It is implemented as
a counter which keeps the en o signal high as long as it does not reach its

7

7 Memory-mapped peripherals

Blocking
side

PG

1

0

No sig.
detect

TTL idle
(no sig.)

TTL
pulse
sig.

FPGA

ttlsel

gfen

SW1.1

SW2.4

gfen

ttlsel

1

0

ttlsel

Blo. idle
(no sig.)

Blocking
pulse
sig.

Figure 6: Board-level view of pulse replication mechanism

maximum value. The counter counts up when the cnt input is high. By
setting the maximum value of the counter to 12499, it disables the line to
the multiplexer if this stays high for 100 µs, thus allowing for blocking pulses
at the input of the OR gate. The line is re-enabled as soon as it goes back
low, i.e., when a wire has been plugged in to the channel.

cnt en_o

1

0

clk125

12499

Figure 7: No signal detect block

7 Memory-mapped peripherals

This section details the various peripherals mapped on the internal Wish-
bone bus. Access to these peripherals is made through the two serial lines on
the VME P1 connector (SERCLK, SERDAT). The VBCP protocol is used
to access these peripherals. A bridge module translates VBCP transfers into
Wishbone transfers.

The complete memory map of the firmware can be found in Appendix A.

8

8 Folder Structure

7.1 VBCP to Wishbone bridge

The vbcp wb module implements a bridge between the serial lines on the
VME P1 connector using VBCP and the Wishbone interconnect. The mod-
ule provides one I2C slave interface for connecting to an ELMA SysMon and
one Wishbone master interface.

Details about the module’s implementation can be found in its docu-
mentation, in the conv ttl blo gw/doc/vbcp wb/ folder (see Section 8).

7.2 Control and status registers

The status registers implemented in the firmware contain the current firmware
version, the position of the on-board switches and the values on RTM de-
tection lines.

No control registers are currently implemented.
See Appendix A.1 for more information.

7.3 MultiBoot control

The MultiBoot module offers the remote reprogramming capabilities for the
CONV-TTL-BLO board. It offers a set of registers for controlling writing a
bitstream to the M25P32 flash chip and for issuing the remote reprogram-
ming command.

For information on the module, refer to its documentation under the
conv ttl blo gw/doc/multiboot/ folder (see Section 8). The memory map
of the module is also present in this manual, for quick reference (see Ap-
pendix A.2).

8 Folder Structure

The folder structure for the project is presented below.

→ ../ip cores/

→ conv-ttl-blo-gw/doc/

→ hdlguide/

→ i2c slave/

→ multiboot/

→ vbcp wb/

→ conv-ttl-blo-gw/hdl/

→ bicolor led ctrl/

→ bicolor led ctrl.vhd

9

8 Folder Structure

→ bicolor led ctrl pkg.vhd

→ ctb pulse gen/

→ rtl/

→ ctb pulse gen.vhd

→ glitch filt/

→ rtl/

→ glitch filt.vhd

→ multiboot/

→ rtl/

→ multiboot fsm.vhd

→ multiboot regs.vhd

→ spi master.vhd

→ xil multiboot.vhd

→ release/

→ rtl/

→ conv regs.vhd

→ top/

→ conv ttl blo.vhd

→ conv ttl blo.ucf

→ reset gen/

→ rtl/

→ reset gen.vhd

→ rtm detector/

→ rtl/

→ rtm detector.vhd

→ vbcp wb/

→ rtl/

→ i2c slave.vhd

→ vbcp wb.vhd

The ip cores/ folder contains repository files that the firmware uses, such
as the Wishbone crossbar (xwb crossbar).

Documentation such as this HDL guide and some HDL modules devel-
oped as part of the CONV-TTL-BLO project can be found in the conv-ttl-
blo/doc/ folder.

Modules that have been developed as part of the CONV-TTL-BLO
project are present in their own folders as sub-nodes of the conv-ttl-blo/hdl/

10

9 Getting Around the Code

folder. In general, the module files are present under an rtl/ sub-folder. The
I2C bridge module folder also contains the instantiated i2c slave module.

The release/ folder is the main folder in the firmware package, as can be
seen from the fact that it is bolded in the folder structure above. It contains
top-level files in the top/ folder (HDL and UCF file for pin definitions) and
other specific modules in the rtl/ folder.

9 Getting Around the Code

As described above, the main part of the release firmware can be found in
the conv-ttl-blo/hdl/release/ folder. The top-level file is conv ttl blo.vhd.

Ports and signals usually follow the coding guideline at [4]. Most of the
top-level ports of the firmware are lower-case versions of their schematics
counterparts. The exceptions from this are due to either net names that
could not be syntactically represented in VHDL, or net names that have
been made clearer in VHDL code. Input ports are assigned to architecture
signals and signals are assigned to output ports in each code section.

architecture behav of conv_ttl_blo_v2 is

Type declarations

Constant declarations

Component declarations

Signal declarations

begin

end

125 MHz clock, reset

I2C bridge and crossbar

CSR instantiation

Pulse generation and pulse
status logic

begin

Status LEDs

RTM detection

(a) (b)

Figure 8: VHDL architecture

The declarative part of the architecture is organized as shown in Fig-
ure 8 (a). Types are declared right after the architecture declaration, fol-
lowed by con- stant declarations, followed by component declarations, after
which the var- ious signals are declared.

The body of the architecture is organised as shown in in Figure 8 (b).

11

9 Getting Around the Code

It begins by instantiating a differential buffer for the 125 MHz system clock
and instantiating the reset gen component. Then, the vbcp wb bridge mod-
ule is instantiated along with the Wishbone crossbar that offers access to
the rest of the Wishbone modules in the design. Next, the CONV board
CSR module is instantiated, followed by the instantiation of twelve pulse
generator modules, six for pulse repetition and six for the pulse LEDs. This
is followed by the logic for the status LEDs and the file ends with the RTM
detection modules.

12

A Memory map

Appendices

A Memory map

Table 4 shows the complete memory map of the firmware. The following
sections list the memory map of each peripheral.

Table 4: CONV-TTL-BLO memory map
Periph. Address Description

Base End

CSR 0x000 0x0f Control and status register
MultiBoot 0x040 0x5f MultiBoot module

A.1 Control and status registers

Base address: 0x000

Offset Name Description
0x0 BID Board ID register
0x4 SR Status register
0x8 Reserved Read undefined; write as 0
0xc Reserved Read undefined; write as 0

A.1.1 Board ID register

Bits Field Access Default Description
31..0 ID R/O 0x424c4f32 Board ID

Field Description
ID Board ID (ASCII string BLO2)

A.1.2 Status register

Bits Field Access Default Description
15..0 FWVERS R/O X Firmware version
23..16 SWITCHES R/O X Switch status
29..24 RTM R/O X RTM detection lines
31..30 Reserved R/O X

13

A Memory map

Field Description
FWVERS Firmware version

– leftmost byte hex value is major release decimal value
– rightmost byte hex value is minor release decimal value
e.g.
0x0101 – v1.01
0x0107 – v1.07
0x0274 – v2.74
etc.

SWITCHES Current switch status
bit 0 – SW1.1
bit 1 – SW1.2
...
bit 7 – SW2.4
1 – switch is OFF
0 – switch is ON

RTM RTM detection lines status
0 – line active
1 – line inactive

Reserved Write as ’0’; read undefined

A.2 MultiBoot module

Base address: 0x040

Offset Name Description
0x00 CR Control Register
0x04 SR Status register
0x08 GBBAR Golden Bitstream Base Address Register
0x0c MBBAR Multiboot Bitstream Base Address Register
0x10 FAR Flash access register
0x14 Reserved Read undefined; write as 0
0x18 Reserved Read undefined; write as 0
0x1c Reserved Read undefined; write as 0

14

A Memory map

A.2.1 CR – Control Register

Bits Field Access Default Description
31..18 Reserved – X
17 IPROG R/W 0 IPROG bit
16 IPROG UNL R/W 0 IPROG unlock bit
15..7 Reserved – X
6 RDCFGREG R/W 0 Read config register
5..0 CFGREGADR R/W 0 Config register address

Field Description
Reserved Write as ’0’; read undefined
IPROG When 1, it triggers the FSM to send the IPROG com-

mand to the ICAP controller
This bit needs to be unlocked by setting the
IPROG UNL bit in a previous cycle

IPROG UNL Unlock bit for the IPROG command. This bit needs
to be set to 1 prior to writing the IPROG bit

RDCFGREG Initiate a read from the FPGA configuration register
at address CFGREGADR
This bit is automatically cleared by hardware

CFGREGADR The address of the FPGA configuration register to
read (see Configuration Registers section in [5])

A.2.2 IMGR – Image Register

Bits Field Access Default Description
31..17 Reserved – X
16 VALID R/O 0 Image register is valid
15..0 CFGREGIMG R/O 0 Config. register image

Field Description
Reserved Write as ’0’; read undefined
VALID A read has been performed from the FPGA configu-

ration register at address CR.CFGREGADR, and its
value is present in CFGREGIMG

CFGREGIMG Contains the value of the FPGA configuration regis-
ter; validated by the VALID bit (see Configuration
Registers section in [5])

15

A Memory map

A.2.3 GBBAR – Golden Bitstream Base Address Register

Bits Field Access Default Description
31..24 OPCODE R/W 0 Flash chip read op-code
23..0 GBA R/W 0 Golden Bitstream Address

Field Description
OPCODE Op-code for the flash chip read (or fast-read) com-

mand. Get this value from the flash chip datasheet
GBA Start address of the Golden bitstream on the flash

chip

A.2.4 MBBAR – MultiBoot Bitstream Base Address Register

Bits Field Access Default Description
31..24 OPCODE R/W 0 Flash chip read op-code
23..0 MBA R/W 0 MultiBoot Bitstream Address

Field Description
OPCODE Op-code for the flash chip read (or fast-read) com-

mand. Get this value from the flash chip datasheet
MBA Start address of the MultiBoot bitstream on the flash

chip

16

A Memory map

A.2.5 FAR – Flash Access Register

Bits Field Access Default Description
31..29 Reserved – 0 Flash chip read op-code
28 READY R 1 SPI access status
27 CS R/W 0 SPI chip select
26 XFER R/W 0 Start SPI transfer
25..24 NBYTES R/W 0 Number of bytes to send
23..16 DATA[2] R/W 0 Data at offset 2
15..8 DATA[1] R/W 0 Data at offset 1
7..0 DATA[0] R/W 0 Data at offset 0

Field Description
Reserved Write as ’0’; read undefined
READY SPI transfer ready; NBYTES have been sent to the

flash chip, and NBYTES read from the chip present
in DATA fields

CS SPI chip select. Note that this pin has opposite po-
larity than the normal SPI chip select pin:
’1’ – flash chip is selected (CS pin = 0)
’0’ – flash chip is not selected (CS pin = 1)

XFER ’1’ – starts SPI transfer
This bit is automatically cleared by hardware

NBYTES Number of DATA fields to send in one transfer
0 – send 1 byte (DATA[0])
1 – send 2 bytes (DATA[0], DATA[1])
2 – send 3 bytes (DATA[0], DATA[1], DATA[2])
3 – Reserved

DATA[2] Write this register with the value of data byte 2
After an SPI transfer, this register contains the value
of data byte 2 read from the flash

DATA[1] Write this register with the value of data byte 1
After an SPI transfer, this register contains the value
of data byte 1 read from the flash

DATA[0] Write this register with the value of data byte 0
After an SPI transfer, this register contains the value
of data byte 0 read from the flash

17

References

References

[1] T.-A. Stana, “CONV-TTL-BLO User Guide.” http://www.ohwr.org/

documents/263, 06 2013.

[2] T.-A. Stana, “CONV-TTL-BLO Hardware Guide.” http://www.ohwr.

org/documents/282, 07 2013.

[3] “Rear Transition Module detection.” http://www.ohwr.org/projects/

conv-ttl-blo/wiki/RTM_board_detection.

[4] P. Loschmidt, N. Simanić, C. Prados, P. Alvarez, and J. Serrano, “Guide-
lines for VHDL Coding,” 04 2011. http://www.ohwr.org/documents/

24.

[5] Xilinx, “UG380 - Spartan-6 Configuration Guide.” http://www.

xilinx.com/support/documentation/user_guides/ug380.pdf, Jan.
2013. v2.5.

18

http://www.ohwr.org/documents/263
http://www.ohwr.org/documents/263
http://www.ohwr.org/documents/282
http://www.ohwr.org/documents/282
http://www.ohwr.org/projects/conv-ttl-blo/wiki/RTM_board_detection
http://www.ohwr.org/projects/conv-ttl-blo/wiki/RTM_board_detection
http://www.ohwr.org/documents/24
http://www.ohwr.org/documents/24
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

	Introduction
	FPGA Clocks
	Reset generator
	RTM detection
	Bicolor LED controller
	Board-level view

	Pulse generator
	Implementation
	Board-level view

	Memory-mapped peripherals
	VBCP to Wishbone bridge
	Control and status registers
	MultiBoot control

	Folder Structure
	Getting Around the Code
	Appendices
	Memory map
	Control and status registers
	Board ID register
	Status register

	MultiBoot module
	CR – Control Register
	IMGR – Image Register
	GBBAR – Golden Bitstream Base Address Register
	MBBAR – MultiBoot Bitstream Base Address Register
	FAR – Flash Access Register

