
I2C Slave Core

October 29, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

26-06-2013 0.01 First draft

Contents

Contents

1 Introduction 1

2 Instantiation 1

3 I2C Bus Protocol 3

4 Operation 5
4.1 Read mode . 5
4.2 Write mode . 6

5 Implementation 7

i

List of Tables

List of Figures

1 Connecting the I2C ports . 1
2 I2C bus topology . 3
3 Bit-level transfers on the I2C bus 4
4 Bytes transferred on the I2C bus 4
5 Block diagram of i2c slave module 7

List of Tables

1 Ports of i2c slave module . 2
2 Statuses at the stat o pin . 5
3 The states of the i2c slave FSM 7

List of Abbreviations

ASIC Application-Specific Integrated Circuit
FPGA Field-Programmable Gate Array
I2C Inter-Integrated Circuit
SCL Serial CLock
SDA Serial DAta

ii

2 Instantiation

1 Introduction

The i2c slave VHDL module implements a simple I2C slave core capable of
responding to I2C transfers generated by a master. The module is conceived
to be controlled by an external module. Basic shifting of bits into the module
is handled during read transfers (from the slave’s point of view), at the end
of which the user is presented with the received byte. Similarly, in the case
of a write transfer, the user inputs a byte to be sent, and the module handles
shifting out of each of the bits. The status of the module can be obtained
via dedicated ports.

The main features of the i2c slave module are:

• simple operation

– passive until addressed by master

– read transfers – presents the user with the received byte at specific
port

– write transfer – sends the byte at input port to the master

– communication status can be checked via dedicated port

• 7-bit addressing

• standard (100 kHz) and fast (400 kHz) modes supported

• no clock stretching, all information provided by the module should be
handled externally within the time span of an I2C bit transfer

• internal watchdog timer resets logic in case of bus error

• architecture-independent, can be used with various FPGA types or
ASICs

2 Instantiation

This section offers information useful for instantiating the i2c slave core
module. Table 1 presents a list of ports of the i2c slave module.

I2C-specific ports should be instantiated as outlined in Figure 1, via
tri-state buffers enabled by the scl en o lines sda en o.

scl_o

scl_i

scl_en_o

SCL sda_o

sda_i

sda_en_o

SDA

Figure 1: Connecting the I2C ports

To instantiate a tri-state buffer in VHDL:

1

2 Instantiation

SCL <= scl_o when (scl_en_o = ’1’) else

’Z’;

scl_i <= SCL;

SDA <= sda_o when (sda_en_o = ’1’) else

’Z’;

sda_i <= SDA;

and in Verilog:

assign SCL = (scl_en_o) ? scl_o : 1’bz;

assign scl_i = SCL;

assign SDA = (sda_en_o) ? sda_o : 1’bz;

assign sda_i = SDA;

The rest of the ports should be connected in a normal manner to an ex-
ternal controlling module. A component declaration of the i2c slave module
is readily available in the i2c slave pkg.vhd package file. The package also
defines constants for the statuses readable at the stat o pin. Refer to Sec-
tion 4 for details regarding the various statuses.

Table 1: Ports of i2c slave module
Name Size Description

clk i 1 Clock input
rst n i 1 Active-low reset input
scl i 1 SCL line input
scl o 1 SCL line output
scl en o 1 SCL line tri-state enable
sda i 1 SDA line input
sda o 1 SDA line output
sda en o 1 SDA line output tri-state enable
i2c addr i 7 I2C slave address of the module, compaired

against received address
ack n i 1 ACK to be sent to the master in case of master

write transfers
op o 1 State of the R/W bit at the end of the address

byte
tx byte i 8 Byte of data to be sent over I2C
rx byte o 8 Byte received over I2C
done p o 1 One clk i cycle-wide pulse, signaling the slave

module has performed a valid transfer
stat o 3 Current state of communication

2

3 I2C Bus Protocol

3 I2C Bus Protocol

The I2C bus protocol is a two-wire protocol defined by Philips/NXP. The
original specification [1] defines all aspects of the protocol, from hardware
connections on the bus, to bit- and byte-level data transfers and electrical
characteristics of the bus. A summary of the protocol is given here.

Master 1

SCL SDA

Master 2

SCL SDA

Slave 1

SCL SDA

Slave 2

SCL SDA

Slave 3

SCL SDA

Figure 2: I2C bus topology

Devices on the I2C bus are connected together via two pins on the bus:
the SCL (serial clock) and SDA (serial data) pins. I2C masters drive the
SCL line to send or receive bits on the SDA line. Both the SCL and SDA
lines on an I2C device are open-collector pins; as Figure 2 shows, one pull-up
resistor on the bus connects the line to VCC and I2C devices connect the
SCL and SDA lines to ground when they drive the lines. In this way, a
device can set a logic low level on the bus by driving the pin and a logic
high level by releasing the pin.

A typical I2C bit-level transfer (Figure 3) follows the following sequence:

• master sends a start condition, driving the SDA line low while the
SCL line is high

• master issues a series of SCL pulses to a slave to read or write bits;
the SDA line must be stable for the duration of SCL high pulse for
the bit to be properly transferred

• master sends a stop condition by releasing the SDA line while SCL
line is high, or a repeated start (similar to start) condition if it wants
to continue data transfer

Data are transferred on the bus in bytes, one bit at a time starting with
the most significant bit. After each sent byte, the other communicating
party ACKs (’0’) or NACKs (’1’) the transfer on a 9th SCL cycle. Any
number of bytes can be sent during a transfer, the master decides when
data transfer should stop by sending the stop condition. The folowing steps
comprise a complete I2C data transfer (Figure 4):

• master sends start condition

3

3 I2C Bus Protocol

SDA

SCL

Start (S) or repeated start (Sr)
condition Valid bit transfer Stop condition (P)

Figure 3: Bit-level transfers on the I2C bus

From master to slave

From slave to master

Either master to slave, or
slave to master

S PSlave address R/W A Data A/AA/AA/A Data A/ASr Slave address R/W A

One or more bytes of
data and ACK/NACK

One or more bytes of
data and ACK/NACK

Figure 4: Bytes transferred on the I2C bus

• master sends slave address (7 bits of address + one R/W bit)

• if a slave with this address exists, it ACKs (’0’) the master

• based on the R/W bit (’0’ for read from slave, ’1’ for write to slave),
the master either reads or writes a byte bit by bit from/to the slave

• the receiver ACKs (’0’) or NACKs (’1’) the byte on the ninth SCL
cycle

• any number of bytes may be sent, each followed by an ACK or NACK
from the receiver

• optional: the master may (or may not) reverse data transfer by issu-
ing a repeated start and sending the slave address with the R/W bit
flipped

• optional: any number of bytes may be sent, each followed by an ACK
or NACK from the receiver

• the master ends data transfer by sending the stop condition

4

4 Operation

4 Operation

The i2c slave waits for a start condition to be performed on the I2C bus
by a master module. The address is shifted in and if it matches the slave
address set via the i2c addr i input, the done p o output is set for one clk i
cycle and the stat o output signals an address match. Based on the eighth
bit of the first I2C transfer byte, the module then starts shifting in or out
each byte in the transfer, setting the done p o output for one clock cycle
after each received/sent byte. The stat o output can be checked to see if the
byte has been sent/received correctly.

When the cycle-wide done p o output is high (after every successful
transfer, or a stop condition) the stat o (possibly together with the op o)
output can be checked to see the appropriate action to be taken. The various
statuses possible at the stat o output are listed in Table 2.

Table 2: Statuses at the stat o pin
stat o Description

00 Slave idle, waiting for start condition. This is the
state upon startup and after the I2C stop condi-
tion is received

01 Address sent by the master matches that at
i2c addr i ; op o valid

10 Read done, waiting for ACK/NACK to send to
master

11 Write done, waiting for next byte to send to mas-
ter

The ack n i port is used for sending the ACK to the master. The polarity
of the bit is that of the I2C ACK signal (’0’ – ACK, ’1’ – NACK). A ’0’
should be set at the input also when the address is ACKed, otherwise the
slave will not acknowledge its own address. This implies that the ack n i
pin can be used to isolate the slave from the bus.

4.1 Read mode

When the eighth bit of the address byte is low (R/W = ’0’), the slave goes
into read mode. Each bit of the byte sent by the master is shifted in on
the falling edge of SCL. After eight bits have been shifted in, done p o is
set for one clk i cycle and the status signals a successful read (”10”). The
received byte should be read from the rx byte o output and an ACK (’0’) or
NACK (’1’) should be sent to the master via the ack n i pin. The i2c slave
module does not implement clock stretching, so the ack n i pin should be
set before the SCL line goes high.

5

4 Operation

The steps below should be followed when reading one or more bytes sent
by the master:

1. Wait for done p o to go high, signaling the I2C address of the slave
has been read.

2. Check that stat o is ”01” (address good) and that op o is ’0’ (master
write, slave read). Set a ’0’ at the ack n i input to send the ACK to
the address; if ack n i is ’1’, the slave does not acknowledge its own
address.

3. Wait for done p o to go high.

4. Check that stat o is ”10” (read done), read the received byte from
rx byte o and write a ’0’ at ack n i to send an ACK, or a ’1’ to send
an NACK.

5. The transfer is repeated until the master sends a stop condition.

6. After the stop condition is received, the done p o goes high for one
clock cycle and the status is set to ”00”.

4.2 Write mode

When a master reads from the slave, the eighth bit of the address byte is
high (R/W = ’1’). In this case, the i2c slave module goes in write mode,
where the byte at the tx byte i port is sent to the master. When the byte
has been successfully sent, the done p o is high for one clock cycle and the
stat o port has the value ”11”, signaling the slave has successfully sent a
byte and is awaiting the loading of another byte.

The steps below should be followed when writing one or more bytes to
a master:

1. Wait for done p o to go high, signaling the I2C address of the slave
has been read.

2. Check that stat o is ”01” (address good) and op o is ’1’ (master read,
slave write). Set the byte to be sent to the master at the tx byte i
input. Set a ’0’ at ack n i to send the ACK to the address; if ack n i
is ’1’, the slave does not acknowledge its own address.

3. Wait for done p o to go high.

4. Check that stat o is ”11” (write done) and set the next byte to be sent
at the tx byte i port.

6

5 Implementation

5. If the master acknowledges the transfer, the next byte is sent, other-
wise, the master will send a stop condition, so the i2c slave module is
reset.

Note that if a stop condition is received from the master, the done p o
goes high for one clock cycle and the status is set to ”00”.

5 Implementation

This section presents implementation details of the i2c slave module. A
simplified block diagram of the module is presented in Figure 5.

glitch filt

glitch_filt

rxsr txsrsda_i

scl_i

FSM

sda_o

sda_en_o

en en

op_o

done_o

i2c_addr_i

ack_n_i

ld

rx_byte_o tx_byte_i

stat_o

watchdog

Figure 5: Block diagram of i2c slave module

Deglitched versions of the SCL and SDA lines control operation of the
central finite-state machine (FSM), which sets the outputs and controls the
rest of the components in the module.

The FSM is sensitive to start and stop conditions and falling edges of
the SCL line. It controls how outputs are set, when the reception and
transmission shift registers (RXSR/TXSR) are loaded and when they shift,
and acknowledging to the address and bytes sent by the master. Table 3
lists the states of the FSM and the operations performed in each state.

An internal watchdog counter is implemented inside the i2c slave mod-
ule. This counter counts up to 1 second and is reset at the start of each
state of the FSM. If the FSM stops in one of the states because of a bus
error, the watchdog resets the FSM, thereby stopping the communication.

Table 3: The states of the i2c slave FSM

State Description

IDLE Idle state, FSM default state after reset and the state
returned to after reception of a stop condition.

STA State reached after a start condition is received.
On the falling edge of SCL, the FSM transitions to
ADDR state.

7

5 Implementation

State Description

ADDR Shift in 7 address bits and R/W bit and go to
ADDR ACK state. Each bit is shifted in on the
falling edge of SCL. If the received address matches,
op o and done p o are set.

ADDR ACK Check received address and send the ACK value at
ack n i if the address corresponds to i2c addr i. If
the R/W bit is high, go to RD state, otherwise go
to WR LOAD TXSR state. If received address does
not match, NACK and go to IDLE state.

RD Shift in eight bits sent by master and go to RD ACK
state. Each bit is shifted in on the falling edge of SCL.
When eight bits have been shifted in, set done p o.

RD ACK Read ack n i and forward it to sda o (ACK/NACK
from external controller). If ack n i is ’0’, then go
back to RD state, else to IDLE state.

WR LOAD TXSR Load TX shift register with data at tx byte i input
and go to WR state.

WR Shift out the eight bits of the TXSR starting with
MSB and go to WR ACK state. TXSR shifts left
on falling edge of SCL. When eight bits have been
shifted out, done p o is set.

WR ACK Read ACK bit sent by master. If ’0’, go back to WR
state, otherwise go to IDLE state.

8

References

References

[1] “I2C Bus Specification, version 2.1,” Jan. 2000. http://www.nxp.com/

documents/other/39340011.pdf.

9

http://www.nxp.com/documents/other/39340011.pdf
http://www.nxp.com/documents/other/39340011.pdf

	Introduction
	Instantiation
	I2C Bus Protocol
	Operation
	Read mode
	Write mode

	Implementation

