
Xilinx MultiBoot module

October 29, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

28-10-2013 0.1 First draft

Contents

Contents

1 Introduction 1

2 Instantiation 2

3 Using the Xilinx MultiBoot module 3

4 Xilinx MultiBoot technology 3
4.1 Reasons for bitstream load failure 5
4.2 Generating the bitstreams . 6
4.3 Important note regarding MultiBoot bitstreams 6

5 Implementation 6
5.1 Sending data to the flash chip 7
5.2 Reading FPGA configuration registers 9
5.3 Sending the IPROG command 10

6 Modifying the design 11

7 Synthesis results 12

Appendices 13

A Memory map 13
A.1 CR – Control Register . 13
A.2 IMGR – Image Register . 14
A.3 GBBAR – Golden Bitstream Base Address Register 14
A.4 MBBAR – MultiBoot Bitstream Base Address Register . . . 14
A.5 FAR – Flash Access Register 15

B Sending multiple data fields in one SPI transfer 16

i

List of Tables

List of Figures

1 Block diagram of xil multiboot module 1
2 Bitstreams in a MultiBoot design 4
3 Phases of the multiboot fsm 7
4 SPI settings (source: Wikipedia) 9
5 Effects of FAR writes . 16

List of Tables

1 Ports of the Xilinx MultiBoot module 2
2 MultiBoot workflow . 3
3 Bitstream synchronization word 5
4 bitgen flags . 6
5 Phases of the multiboot fsm 7
6 Flash data sequence . 8
7 Configuration register readout via xil multiboot 10
8 Sequence for sending the IPROG command 10
9 Changing the Wishbone interconnect 11
10 Modifying SPI settings . 11
11 Synthesis results . 12
12 Values to send to flash chip 16

List of Abbreviations

FPGA Field-Programmable Gate Array
IPROG Internal PROGRAM B
OHWR Open Hardware Repository
PROM Programmable Read-Only Memory
SPI Serial Peripheral Interface

ii

1 Introduction

1 Introduction

Xilinx MultiBoot technology [1] allows reprogramming an FPGA by down-
loading a bitstream to a PROM chip external to the FPGA and then issuing
an IPROG (Internal PROGRAM B) command to the configuration logic of
the FPGA. This command triggers deletion of the FPGA configuration and
rewriting it with the new configuration written to the PROM.

This document describes xil multiboot, an Open Hardware (OHWR) [2]
FPGA design that can be used to remotely reprogram a Xilinx Spartan-6
FPGA using MultiBoot technology.

multiboot_regs multiboot_fsm

spi_master

icap_spartan6

Wishbone
interface

SPI flash chip

Configuration
logic

Figure 1: Block diagram of xil multiboot module

The main features of the xil multiboot module are:

• software controls operation of the module

– Wishbone interface implements registers for control and status
readout

– writing FPGA bitstream data to the flash chip

– issuing reprogramming command to the FPGA (via Xilinx ICAP)

– reading boot status register from the FPGA configuration logic
(via Xilinx ICAP)

• a finite-state machine (FSM) controls writing to the flash chip and
sending the reprogramming command to the FPGA

• modular, easily modifiable design

– PROM chip is controlled by software, so virtually any 8-bit SPI
PROM chip is supported by writing software to send the various
commands to the chip

– Wishbone interface can easily be replaced by some other inter-
connect (e.g., AXI)

1

2 Instantiation

A block diagram of the xil multiboot module is shown in Figure 1. Users
can write bitstream data to a flash by writing each byte of the bitstream
to a module register (in the multiboot regs) module. Writing to the flash
is done via the spi master module under the control of the finite-state ma-
chine (FSM) module (multiboot fsm). After the bitstream has been written
to the flash module, a remote reprogramming command is sent to the con-
figuration logic by setting a bit in one of the control registers. The Xilinx
ICAP SPARTAN6 primitive is the interface between the xil multiboot mod-
ule and the FPGA configuration logic.

For the rest of the document, the external PROM chip that the FPGA
uses to program itself will be referred to as flash, since a flash chip was used
as the external PROM during the design of the module. However, this does
not mean xil multiboot works only with flash chips. Any 8-bit SPI PROM
should be usable with the xil multiboot design.

2 Instantiation

Table 1 lists the ports of the xil multiboot module. In order to instantiate
the MultiBoot module, one needs to connect the Wishbone slave ports to
a Wishbone master, such as the xwb crossbar Wishbone crossbar module
on OHWR [3]. The SPI ports should be connected directly to the FPGA
output ports connected to the flash chip.

Table 1: Ports of the Xilinx MultiBoot module
Port Size Description

clk i 1 Clock input
rst n i 1 Active-low reset input
wbs i Wishbone slave interface inputs
wbs o Wishbone slave interface outputs
spi cs n o 1 Active-low chip select output
spi sclk o 1 SPI clock output
spi mosi o 1 SPI data output line (Master Out, Serial In)
spi miso i 1 SPI data input line (Master In, Serial Out)

Note that in order to use the module, the OHWR general-cores library [3]
needs to be imported into the design. This library is where the structures
for the Wishbone slave interface ports (wbs i and wbs o) are defined.

2

4 Xilinx MultiBoot technology

3 Using the Xilinx MultiBoot module

For an example project of where the Xilinx MultiBoot module is used, see
the CONV-TTL-BLO project [4]. The firmware of this project, starting from
version 2.0, instantiates the MultiBoot module. The project also contains
example Python scripts for writing a bitstream to the flash. Refer to the
project webpage [4] for more information.

Table 2 shows the MultiBoot workflow [5]. See [6] for pointers on how to
generate a MultiBoot bitstream. The address map of the MultiBoot module
can be found in Appendix A. This appendix details the various registers the
user should write as part of the MultiBoot workflow.

Table 2: MultiBoot workflow
Step Action

1 Prepare a Xilinx FPGA bitstream
2 Send the bitstream to the flash by writing to the FAR

register
3 Write the MultiBoot bitstream start address and

flash chip read command op-code into the MBBAR
register

4 Write the Golden bitstream start address and flash
chip read command op-code into the GBBAR register

5 Unlock the IPROG bit in the FPGA by setting
CR.IPROG UNL

6 Issue a reprogramming command to the FPGA by
setting CR.IPROG

4 Xilinx MultiBoot technology

Spartan-6 configuration logic is organized in a set of frames, which can be
written to or read from using 16-bit word transfers. A Spartan-6 FPGA
bitstream consists of commands that access the FPGA configuration logic
to read and write these frames, as well as the data for the configuration logic
frames.

When using the MultiBoot technology, multiple bitstreams exist for one
FPGA. These bitstreams are all stored on the attached flash chip and the
user can send a special instruction called IPROG (Internal PROGRAM B)
to reprogram the FPGA chip using one of the bitstreams on the flash.

Most MultiBoot designs will contain at least three bitstreams, as shown
in Figure 4. When the FPGA board is powered on, if it is configured in
master mode configuration [1], the FPGA will start loading a bitstream
from address zero of the attached flash chip. This is where the Header

3

4 Xilinx MultiBoot technology

Header

Golden
Bitstream

MultiBoot
Bitstream

0x000000

0xFFFFFF

Strike 0..2

Strike 3..5

Strike 6..8

1st Image

2nd Image

3rd Image

Figure 2: Bitstreams in a MultiBoot design

bitstream resides. This small bitstream contains a synchronization word for
the configuration logic, sets the start address of the MultiBoot and Golden
bitstreams and sends an IPROG command to the configuration logic.

The IPROG command causes the configuration logic to start loading the
MultiBoot bitstream from the flash chip, starting at the given MultiBoot
address. If the MultiBoot bitstream fails to load three times (see below
for bitstream load failure reasons), the configuration logic falls back to the
Golden bitstream. This is a bitstream which is known to be safe, should the
MultiBoot bitstream be corrupted on load.

Should the Golden bitstream also be corrupted, the configuration logic
tries to load it three times and then returns to the Header bitstream. When
here, the configuration logic attempts to load the MultiBoot and Golden
bitstreams three more times, before configuration failure.

A strike counter is used to select between which of the three bitstreams
is loaded. This strike counter is stored in the configuration BOOTSTS
register and can only be reset by a power-on reset or by pulsing the FPGA’s
PROGRAM B pin. The strike counter is shared among the three bitsreams;
as Figure 4 shows and as just described, each bitstream is selected based on

4

4 Xilinx MultiBoot technology

the value of this counter:

• if it is 0..2, the MultiBoot bitstream gets loaded

• if it is 3..5, the Golden bitstream gets loaded

• if it is 6..8, the Header bitstream gets loaded, and MultiBoot and
Golden bitstreams are attempted three more times

• if it is 9, configuration is halted

4.1 Reasons for bitstream load failure

There are two ways in which a bitstream load can fail:

• synchronization word Watchdog timeout

• bitstream CRC error

Prior to performing any work, the FPGA configuration logic looks for a
synchronization word in the bitstream. This synchronization word is shown
in Table 4.1. The configuration logic contains a Watchdog timer that counts
down from a value specified by the Xilinx bitgen tool when the bitstream
is generated (see Table 4.1). The Watchdog is disabled when the synchro-
nization word is found. If the Watchdog timer times out, the strike count is
incremented and configuration is reattempted as described above.

Note that the Watchdog timer is only enabled in master configuration
modes, when configuration restarts. It is disabled when the synchroniza-
tion word is found, or when the FPGA uses one of the other configuration
modes [1].

Table 3: Bitstream synchronization word
31 .. 24 23..16 15..8 7..0

0xAA 0x99 0x55 0x66

The second failure mode of the configuration is based on the bitstream
CRC. Each bitstream contains at the end a CRC word which the configu-
ration logic checks before putting the FPGA in running mode. If the CRC
at the end of the bitstream does not correspond to what the configuration
logic computes, a CRC error occurs and the strike count is incremented as
described above.

For configuration to be reattempted and to be able to generate configu-
ration errors, the configuration logic needs some information present in the
bitstream. This information can be provided by setting some bitgen flags
when generating the bitstream. The necessary flags with the recommended
settings are listed in Table 4.1. For more information on bitgen and these
flags, refer to [7].

5

5 Implementation

Table 4: bitgen flags
Flag Setting Description

-g reset on err Yes Enables the strike count mechanism for retry-
ing to load the bitstream

-g CRC Enable Enables the generation of a CRC at the end
of the bitstream

-g TIMER CFG 1fff Sets the watchdog timeout value to 8191
CCLK cycles

4.2 Generating the bitstreams

Refer to [6] for information on how to generate the various bitstreams for a
MultiBoot design.

4.3 Important note regarding MultiBoot bitstreams

Users should be aware that they should include the xil multiboot module
when generating a new MultiBoot bitsream. Otherwise, once a bitstream
without the xil multiboot module inside it is loaded into the FPGA, the
remote reprogramming capability of the FPGA is lost, and the user will
need to use JTAG or other means to program the FPGA with a MultiBoot-
enabled design.

Thus, always remember to include the xil multiboot module in any bit-
stream generated after the Golden bitstream.

5 Implementation

A block diagram of the design has already been presented in Figure 1. This
section describes the actions of the sub-modules in the xil multiboot mod-
ule. The description is rather high-level, some details are omitted for ease of
understanding. The main purpose of this section is for the reader to under-
stand how the MultiBoot module works together with the flash chip and the
configuration logic to achieve FPGA reprogramming, rather than specifying
every detail about the module and its sub-modules.

For more involved details, the user is free to consult the code in the
project repository [8].

The multiboot fsm module is at the heart of the design. It implements
a finite-state machine (FSM) with 34 states, which controls operation of
the module. A simplified diagram of the FSM is shown in Figure 3. The
diagram shows the various phases the FSM is in, and Table 5 lists these
phases. Bear in mind that each phase may contain multiple FSM states.
However, many of these states are just steps of accessing configuration logic

6

5 Implementation

through the Xilinx ICAP module, so for simplicity they are not listed in this
manual. Refer to the code for more complete description.

IDLE

IPROG

IDLE

SPI
transfer

Read status
register

FAR.XFER = 1

sent NBYTES

CR.IPROG = 1

CR.RDCFGREG = 1

sent fewer
than NBYTES

got status
register

Figure 3: Phases of the multiboot fsm

Table 5: Phases of the multiboot fsm
Phase Description

IDLE Wait for one of the following control bits to be set:
CR.RDCFGREG
CR.IPROG
FAR.XFER

SPI transfer Shift out NBYTES of the three DATA fields in the
FAR register, and simultaneously shift in data re-
ceived from the flash
When NBYTES have been sent, FAR.READY is
written high and the FSM returns to IDLE

IPROG IPROG sequence (Table 7-1, p.130 [1])
Read status
register

Configuration register readout sequence (Table 6-1,
p.113 [1])

5.1 Sending data to the flash chip

Table 6 summarizes the flash read and write sequence. A more verbose
description is offered below.

Data to be sent to the flash chip is written in the FAR (see Appendix A.5).
Up to three data bytes can be sent via the FAR during one transfer phase.
These data bytes are written in the DATA fields in little-endian order. The

7

5 Implementation

Table 6: Flash data sequence
Step Action

1 User sets FAR.NBYTES to the number of data bytes
to write

2 User writes NBYTES FAR.DATA fields with the data
to send to the flash

3 User sets FAR.CS to ’1’ for a transfer with the flash
chip enabled, or to ’0’ for a dummy transfer (e.g.,
wait interval between flash commands, with the chip
select high)

4 User sets FAR.XFER to ’1’ to start the SPI transfer
(FAR.XFER is automatically cleared by hardware)

5 The multiboot fsm starts shifting out NBYTES
DATA fields to the spi master, starting with DATA[0]

6 The spi master handles shifting out each bit in a byte
7 When done, the spi master signals the multiboot fsm,

which shifts out the next byte (if NBYTES > 0)
8 When NBYTES bytes have been shifted out, the

multiboot fsm sets the FAR.READY bit
9 After FAR.READY is set, NBYTES DATA fields con-

tain data retrieved from the flash

NBYTES field selects how many of the DATA fields contain bytes to send.
Setting XFER to ’1’ with CS set to ’1’ starts the transfer. Setting XFER
to ’1’ with CS set to ’0’ starts a dummy transfer, with the flash chip not
selected.

The transfer is performed via the spi master module, which handles the
shifting of each DATA byte to the flash. However, the spi master module
can only send one byte at a time, so the multiboot fsm module handles
shifting bytes to the spi master. After a byte has been transferred between
the FPGA and the flash, the multiboot fsm places the byte returned from the
flash into the DATA byte that has just been sent. For example, after sending
DATA[0], the byte received from the flash is placed into DATA[0]; after
sending DATA[1], the byte received from the flash is placed into DATA[1].

When NBYTES data transfers have been completed, the multiboot fsm
sets the signal for the FAR.READY bit to ’1’, to signal a completed transfer.
The user can now read the DATA fields for data retrieved from the flash.

The feature of using more than one DATA field in the FAR is useful when
a lower-speed interface than SPI is used to access the FAR register (e.g., the
VBCP interface in the CONV-TTL-BLO project [4]). If the interface used
to access the FAR is fast, only one byte in the FAR register may be used,
and NBYTES left to 0.

8

5 Implementation

Appendix B gives an example of how data can be written to flash.
The following settings are used for the SPI communication (Figure 4).

• CPOL = 0

• CPHA = 0

SCK CPOL=0
CPOL=1

SS

Cycle # 2 3 4 5 6 7 81

MISO 2 3 4 5 6 7 8 zz 1

MOSI 2 3 4 5 6 7 8 zz 1

CPHA=1

CPHA=0
Cycle # 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8z z

1 2 3 4 5 6 7 8zMOSI z

Figure 4: SPI settings (source: Wikipedia)

This yields that data bits are shifted out from the FPGA on the falling
edge of SCLK and shifted in from the flash chip on the rising edge of SCLK.

5.2 Reading FPGA configuration registers

The Spartan-6 FPGA contains registers which can be read to get the stauts
of the configuration logic. In order to read these registers, a special sequence
must be followed. The sequece (listed in Table 6-1 of [1]) is implemented in
the multiboot fsm. Table 7 lists the sequence users should follow to read out
an FPGA configuration register via the xil multiboot module.

When the user sets the RDCFGREG bit in the xil multiboot control
register (CR), the multiboot fsm initiates the configuration register readout
sequence. It first sends a synchronization word, and then takes the value
of CFGREGADR from the CR and use it to build a Type 1 configuration
frame to read the configuration register (see [1], p. 93 for more details).
The configuration logic will respond to this frame with the value of the
configuration register. This value is placed in the CFGREGIMG field of the
image register, and the multiboot fsm continues to perform the final steps of
the configuration register readout sequence, prior to returning to IDLE.

Note that some configuration registers in the Spartan-6 FPGA are more
than 16 bits wide. The xil multiboot module does not support reading the
full length of the registers; it can only return the least significant 16 bits of
the registers.

9

5 Implementation

Table 7: Configuration register readout via xil multiboot
Step Action

1 User writes the FPGA configuration register address
(Table 5-30, p.94 [1]) in the CFGREGADR field of
the CR

2 User sets the CR.RDCFGREG bit to ’1’ to initiate a
configuration register read via the ICAP module
(CR.RDCFGREG is automatically cleared by hard-
ware)

3 The multiboot fsm performs the sequence in Table 6-
1, p.113 [1] and returns one 16-bit value of the config-
uration register to the CFGREGIMG field of IMGR
and sets the VALID bit of the same register to ’1’

4 The user reads the configuration register value from
IMGR.CFGREGIMG if the VALID bit is ’1’

5.3 Sending the IPROG command

Table 8 lists the actions needed to issue the IPROG command to the FPGA
using the xil multiboot module. When the IPROG bit is set in the CR, the
multiboot fsm handles sending the IPROG sequence (Table 7-1, p.130 [1])
to the ICAP.

Table 8: Sequence for sending the IPROG command
Step Action

1 User sends the bitstream to the flash chip (Sec-
tion 5.1)

2 User sets the IPROG UNL bit in the CR
3 User sets the IPROG bit in the CR
4 The multiboot fsm performs the sequence in Table 7-

1, p.130 [1] and sends the IPROG command
5 The FPGA starts deleting the configuration logic and

loading the new bitstream from the flash
6 After configuration finishes, the user reads the cus-

tom firmware version number register to see that the
reprogramming was successful

Note that after the IPROG command is sent, the FPGA starts the re-
configuration sequence and communication to it will be lost until the new
bitstream is loaded is sent.

The user should implement some form of firmware version numbering to
detect whether an IPROG succeeds. This version number can be stored into
a read-only register in the FPGA and read after the IPROG command. An

10

6 Modifying the design

example of this is given in the CONV-TTL-BLO project [4].

6 Modifying the design

The xil multiboot module is purposely modular in case users want to inter-
face to different FPGA interconnect standards, or different flash chips. In
order to make modifications to the design, knowledge of VHDL is required.

If the user would like to adapt the design for a new FPGA interconnect
standard, the steps to be followed are listed in Table 9.

Table 9: Changing the Wishbone interconnect
Step Action

1 Change wbs i and wbs o in xil multiboot ports to the
preferred interconnect ports

2 Implement or change the current multiboot regs mod-
ule, keeping the interface to the FSM side (e.g., the
multiboot cr iprog o port, etc.)

3 Instantiate the new multiboot regs module into the
xil multiboot module

The SPI interface to the flash chip is hardwired to the settings listed
in Section 5.1. Table 10 lists the steps to be performed in case these SPI
settings need to be changed.

Table 10: Modifying SPI settings
Step Action

1 First, see if the CPOL setting alone will not fix the
problem. If so, simply change the cpol i port value
where the spi master is instantiated

2 Change the design of the spi master module; it is an
easy-to-follow FSM design

Another potential addition to the design would be the capability of read-
ing the full value of all FPGA configuration registers. As outlined in Sec-
tion 5.2, some configuration registers are more than 16 bits in length, and
the xil multiboot module cannot return their full value. This can be modified
by, implementing an extra COUNT field in the CR; the multiboot fsm can
then use this field to build a Type 1 configuration package to return the full
length of the configuration register. More information on this can be found
in the Configuration Packets section of [1].

11

7 Synthesis results

7 Synthesis results

The synthesis results for the xil multiboot design using xst on the Spartan-6
XC6SLX45T are shown in Table 11.

Table 11: Synthesis results
Resource Used Available %

Slices 123 6822 1.8
Slice registers 270 54576 0.5
LUTs 332 27288 1.2

12

A Memory map

Appendices

A Memory map

The memory map of the Xilinx MultiBoot module is shown below. The
following sections detail the fields of each register.

Offset Name Description
0x00 CR Control Register
0x04 SR Status register
0x08 GBBAR Golden Bitstream Base Address Register
0x0c MBBAR Multiboot Bitstream Base Address Register
0x10 FAR Flash access register

A.1 CR – Control Register

Bits Field Access Default Description
31..18 Reserved – X
17 IPROG R/W 0 IPROG bit
16 IPROG UNL R/W 0 IPROG unlock bit
15..7 Reserved – X
6 RDCFGREG R/W 0 Read config register
5..0 CFGREGADR R/W 0 Config register address

Field Description
Reserved Write as ’0’; read undefined
IPROG When 1, it triggers the FSM to send the IPROG com-

mand to the ICAP controller
This bit needs to be unlocked by setting the
IPROG UNL bit in a previous cycle

IPROG UNL Unlock bit for the IPROG command. This bit needs
to be set to 1 prior to writing the IPROG bit

RDCFGREG Initiate a read from the FPGA configuration register
at address CFGREGADR
This bit is automatically cleared by hardware

CFGREGADR The address of the FPGA configuration register to
read (see Configuration Registers section in [1])

13

A Memory map

A.2 IMGR – Image Register

Bits Field Access Default Description
31..17 Reserved – X
16 VALID R/O 0 Image register is valid
15..0 CFGREGIMG R/O 0 Config. register image

Field Description
Reserved Write as ’0’; read undefined
VALID A read has been performed from the FPGA configu-

ration register at address CR.CFGREGADR, and its
value is present in CFGREGIMG

CFGREGIMG Contains the value of the FPGA configuration regis-
ter; validated by the VALID bit (see Configuration
Registers section in [1])

A.3 GBBAR – Golden Bitstream Base Address Register

Bits Field Access Default Description
31..24 OPCODE R/W 0 Flash chip read op-code
23..0 GBA R/W 0 Golden Bitstream Address

Field Description
OPCODE Op-code for the flash chip read (or fast-read) com-

mand. Get this value from the flash chip datasheet
GBA Start address of the Golden bitstream on the flash

chip

A.4 MBBAR – MultiBoot Bitstream Base Address Register

Bits Field Access Default Description
31..24 OPCODE R/W 0 Flash chip read op-code
23..0 MBA R/W 0 MultiBoot Bitstream Address

Field Description
OPCODE Op-code for the flash chip read (or fast-read) com-

mand. Get this value from the flash chip datasheet
MBA Start address of the MultiBoot bitstream on the flash

chip

14

A Memory map

A.5 FAR – Flash Access Register

Bits Field Access Default Description
31..29 Reserved – 0 Flash chip read op-code
28 READY R 1 SPI access status
27 CS R/W 0 SPI chip select
26 XFER R/W 0 Start SPI transfer
25..24 NBYTES R/W 0 Number of bytes to send
23..16 DATA[2] R/W 0 Data at offset 2
15..8 DATA[1] R/W 0 Data at offset 1
7..0 DATA[0] R/W 0 Data at offset 0

Field Description
Reserved Write as ’0’; read undefined
READY SPI transfer ready; NBYTES have been sent to the

flash chip, and NBYTES read from the chip present
in DATA fields

CS SPI chip select. Note that this pin has opposite po-
larity than the normal SPI chip select pin:
’1’ – flash chip is selected (CS pin = 0)
’0’ – flash chip is not selected (CS pin = 1)

XFER ’1’ – starts SPI transfer
This bit is automatically cleared by hardware

NBYTES Number of DATA fields to send in one transfer
0 – send 1 byte (DATA[0])
1 – send 2 bytes (DATA[0], DATA[1])
2 – send 3 bytes (DATA[0], DATA[1], DATA[2])
3 – Reserved

DATA[2] Write this register with the value of data byte 2
After an SPI transfer, this register contains the value
of data byte 2 read from the flash

DATA[1] Write this register with the value of data byte 1
After an SPI transfer, this register contains the value
of data byte 1 read from the flash

DATA[0] Write this register with the value of data byte 0
After an SPI transfer, this register contains the value
of data byte 0 read from the flash

15

B Sending multiple data fields in one SPI transfer

B Sending multiple data fields in one SPI transfer

The FAR register contains three bytes for data fields to be sent to the SPI
chip. As mentioned in Section 5.1, this can be used to send data faster when
the interface used to access the FPGA is slow.

This section shows an example of how to write the values listed in Ta-
ble 12 to an 8-bit flash chip starting with address 0. Since there are 10 values
to be sent, the transfer can be grouped into three 3-byte transfers and one
one-byte transfer. The code snippet below shows how these transfers can be
performed by writing to the FAR, and Figure 5 shows the effects of each of
the writes.

Table 12: Values to send to flash chip
0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a

FAR = 0 x0e030201 ;
while ! (FAR & (1<<28))

;
FAR = 0 x0e060504 ;
while ! (FAR & (1<<28))

;
FAR = 0 x0e090807 ;
while ! (FAR & (1<<28))

;
FAR = 0 x0c00000a ;
while ! (FAR & (1<<28))

;

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0a

FAR = 0x0e030201

FAR = 0x0e060504

FAR = 0x0e090807

FAR = 0x0c00000a

0x00

0x09

0x05

Figure 5: Effects of FAR writes

16

References

References

[1] Xilinx, “UG380 - Spartan-6 Configuration Guide.” http://www.

xilinx.com/support/documentation/user_guides/ug380.pdf, Jan.
2013. v2.5.

[2] “Open Hardware Repository.” http://www.ohwr.org/.

[3] “Generic Cores Library OHWR Project Page.” http://www.ohwr.org/

projects/general-cores/wiki.

[4] “CONV-TTL-BLO Project Page on OHWR.” http://www.ohwr.org/

projects/conv-ttl-blo/wiki, Oct. 2013.

[5] Xilinx, “XTP059: SP605 MultiBoot Design.” http://www.xilinx.com/

support/documentation/boards_and_kits/xtp059.pdf.

[6] T.-A. Stana, “Generating Bitstreams for MultiBoot designs
(Xilinx MultiBoot module Project Page on OHWR).” http:

//www.ohwr.org/projects/conv-ttl-blo-gw/wiki/Xil_multiboot#

Generating-bitstreams-for-Xilinx-FPGA-reprogramming, Oct.
2013.

[7] Xilinx, “Xilinx Command Line Tools User Guide (UG628).”
http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_2/devref.pdf, July 2012.

[8] “CONV-TTL-BLO Gateware Repository on OHWR.” http://www.

ohwr.org/projects/conv-ttl-blo-gw/repository, Oct. 2013.

17

http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.ohwr.org/
http://www.ohwr.org/projects/general-cores/wiki
http://www.ohwr.org/projects/general-cores/wiki
http://www.ohwr.org/projects/conv-ttl-blo/wiki
http://www.ohwr.org/projects/conv-ttl-blo/wiki
http://www.xilinx.com/support/documentation/boards_and_kits/xtp059.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/xtp059.pdf
http://www.ohwr.org/projects/conv-ttl-blo-gw/wiki/Xil_multiboot#Generating-bitstreams-for-Xilinx-FPGA-reprogramming
http://www.ohwr.org/projects/conv-ttl-blo-gw/wiki/Xil_multiboot#Generating-bitstreams-for-Xilinx-FPGA-reprogramming
http://www.ohwr.org/projects/conv-ttl-blo-gw/wiki/Xil_multiboot#Generating-bitstreams-for-Xilinx-FPGA-reprogramming
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/devref.pdf
http://www.ohwr.org/projects/conv-ttl-blo-gw/repository
http://www.ohwr.org/projects/conv-ttl-blo-gw/repository

	Introduction
	Instantiation
	Using the Xilinx MultiBoot module
	Xilinx MultiBoot technology
	Reasons for bitstream load failure
	Generating the bitstreams
	Important note regarding MultiBoot bitstreams

	Implementation
	Sending data to the flash chip
	Reading FPGA configuration registers
	Sending the IPROG command

	Modifying the design
	Synthesis results
	Appendices
	Memory map
	CR – Control Register
	IMGR – Image Register
	GBBAR – Golden Bitstream Base Address Register
	MBBAR – MultiBoot Bitstream Base Address Register
	FAR – Flash Access Register

	Sending multiple data fields in one SPI transfer

