
ELMA I2C to Wishbone bridge

July 22, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

26-06-2013 0.01 First draft

Contents

Contents

1 Introduction 1

2 Instantiation 1

3 Testing the elma i2c module 2

4 ELMA I2C Protocol 4

5 Implementation 5

i

List of Tables

List of Figures

1 Typical system for the elma i2c module 1
2 I2C port external connections 1
3 SysMon write operation . 4
4 SysMon read operation . 4
5 Main FSM of elma i2c module 5
6 FSM states when the SysMon writes to the elma i2c 7
7 FSM states when the SysMon reads from the elma i2c 7

List of Tables

1 Ports of elma i2c module . 2
2 The readreg and writereg commands 3
3 Translating reg numbers to addresses 3
4 States of elma i2c FSM . 6

List of Abbreviations

FSM Finite-State Machine
I2C Inter-Integrated Circuit (bus)
SysMon ELMA crate System Monitor board
VME VERSAmodule Eurocard

ii

2 Instantiation

1 Introduction

This document describes the elma i2c module, an I2C to Wishbone bridge
HDL core for VME64x crates from ELMA. These crates offer the possibil-
ity of accessing boards in VME slots via either VME, or I2C. Boards not
using the VME lines on a slot can implement the elma i2c module on an
FPGA; implements an I2C slave and translates I2C accesses into Wishbone
[1] accesses to a Wishbone slave device.

A typical system where the elma i2c module is employed is shown in
Figure 1. ELMA VME crates contain a SysMon (system monitor) board [2],
that is mainly used for monitoring VME voltages and controlling the fans
of the VME crate. The SysMon can be connected to via either a serial
connection or Telnet. Then, sending specific commands (see Section 3) via
one of the two are translated by the SysMon into I2C accesses following the
protocol described in Section 4.

V
M

E
 P

1

SERCLK

SysMon

VME board

SCL

SDA

FPGA

SERDAT
elma_i2c

Wishbone
memory-mapped

peripherals

Figure 1: Typical system for the elma i2c module

2 Instantiation

The ports of the elma i2c module are shown in Table 1. The I2C signals
should be connected to tri-state ports, as shown in Figure 2; Wishbone slaves
should be connected to the Wishbone master interface ports, prefixed with
wbm.

scl_o

scl_i

scl_en_o

SCL sda_o

sda_i

sda_en_o

SDA

Figure 2: I2C port external connections

1

3 Testing the elma i2c module

Table 1: Ports of elma i2c module
Port Size Description

clk i 1 Clock input
rst n i 1 Active-low reset input
sda en o 1 SDA line output tri-state enable
sda i 1 SDA line input
sda o 1 SDA line output
scl en o 1 SCL line tri-state enable
scl i 1 SCL line input
scl o 1 SCL line output
i2c addr i 7 I2C slave address on ELMA I2C bus
i2c done o 1 High for one clk i cycle when an I2C transfer

is finished
i2c err o 1 High for one clk i cycle when an error occurs

in the ELMA protocol or an attempt is made
to access an non-existing register on the Wish-
bone bus

wbm stb o 1 Wishbone data strobe output
wbm cyc o 1 Wishbone valid cycle output
wbm sel o 4 Wishbone byte select output
wbm we o 1 Wishbone write enable output
wbm dat i 32 Wishbone data input (to master)
wbm dat o 32 Wishbone data output (from master)
wbm adr o 32 Wishbone address output
wbm ack i 1 Wishbone acknowledge signal input
wbm rty i 1 Wishbone retry signal input
wbm err i 1 Wishbone error signal input

3 Testing the elma i2c module

After proper synthesis and download to the FPGA, a Telnet or serial con-
nection should be made to the SysMon board. Commands can then be sent
to the boards via the SysMon. The two commands relevant for accessing
board registers are readreg and writereg, outlined in Table 2.

Register (reg) numbers in these commands are decimal numbers starting
from 1. The SysMon translates reg numbers into word-aligned addresses,
thus in order to obtain the actual register addres, the following relation
should be used:

addr = (reg − 1) ∗ 4

Table 3 shows the reg numbers of registers in the address space 0x00 to
0x20.

2

3 Testing the elma i2c module

Table 2: The readreg and writereg commands
Command Description

writereg slot reg val Writes the value val to register number reg of
board in slot number slot

readreg slot reg Returns the value of register number reg of
board in slot number slot

Table 3: Translating reg numbers to addresses
reg Address

1 0x00
2 0x04
3 0x08
4 0x0C
5 0x10
6 0x14
7 0x18
8 0x1C
9 0x20

The example below shows how to connect to an ELMA crate at IP
address 1.2.3.4, obtaining the value of a register at address 0x10 in a board
in VME slot 2, writing the decimal value 12 to the same register and reading
it back to check for proper modification.

$ telnet 1.2.3.4

Trying 1.2.3.4...

Connected to 1.2.3.4.

Escape character is ’^]’.

login:user

password:**********

%>readreg 2 5

Read Data: 00ABCDEF

%>writereg 2 5 12

Done!

%>readreg 2 5

Read Data: 0000000C

3

4 ELMA I2C Protocol

4 ELMA I2C Protocol

Using the I2C lines on the VME P1 connector, one can access boards placed
in a VME crate. For this purpose, ELMA has defined a higher-level proto-
col [3] that uses I2C as a low-level protocol.

Figure 3 shows a write operation from the SysMon to a VME board.
The process starts with the control byte, containing the board’s I2C slave
address and the read/write bit cleared, indicating an I2C write. After the
slave’s ACK, the following two bytes send the 12-bit address in little-endian
order (most significant byte first). After the address has been acknowledged,
the following four I2C transfers are used to transmit the 32-bit data to be
written to the board register. Data transmission occurs in big-endian order
(least significant byte first).

Control byte Address 1 Address 0

Data 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0

A
C
K

X X X X

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

P

Bus
activity

S
T
A

S
T
O

Data 1 Data 2 Data 3

A
C
K

P

S
T
O

...

Data

Figure 3: SysMon write operation

Data 0

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

P

S
T
O

Data 1 Data 2 Data 3

Control byte Address 1 Address 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0

A
C
K

X X X X

A
C
K

Bus
activity

S
T
A

Control byte

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

1

S
T
A

A
C
K

A
C
K

P

S
T
O

Data

A
C
K

...

Figure 4: SysMon read operation

A read transfer (Figure 4) from a VME board is similar to the write
transfer. The differences lie in the retransmission of the control byte after
the register address, this time with the read/write bit set, to indicate an I2C

4

5 Implementation

read. Following the ACK from the slave, the transfer direction changes and
the SysMon will read the four data bytes sent by the VME board. As with
the write transfer, the data bytes are sent by the VME board in big-endian
order.

5 Implementation

In order to perform low-level I2C transfers, the i2c slave module REFER-
ENCE? is instantiated and used within the elma i2c module. The outputs
of the i2c slave module are used as controls for an eight-state finite state
machine (FSM), a simplified version of which is shown in Figure 5. Table 4
also lists the states of the state machine.

ST_IDLE ST_WB_ADR ST_SIM_WB_TRANSFER

ST_OPST_OP

ST_SYSMON_WR

ST_SYSMON_WR_WB ST_SYSMON_RD

ST_SYSMON_RD_WB

done='0'

done='1'

adr_byte_cnt < 1

adr_byte_cnt = 1

wb_err = '1'
wb_ack = '1'

op = start_op op /= start_op

byte_cnt < 3

byte_cnt < 3

byte_cnt = 3

wb_ack or wb_err

wb_ack = '1'

byte_cnt = 3

ST_IDLE

Figure 5: Main FSM of elma i2c module

When the i2c slave module finishes a transfer (signaled by a done p o
pulse), the status is checked and if it is as expected (e.g., a address good in
the ST IDLE state), the FSM advances to the next state. It should be noted
that where the SysMon appears in the state names, it indicates what the
SysMon action is. For example, if the state of the FSM is ST SYSMON WR,
this means the SysMon is writing and the elma i2c is reading.

To better understand how the FSM operates, Figures 6 and 7 can be
consulted, where the state of the FSM is shown during reads and writes
from the SysMon.

When the SysMon writes (Figure 6), the elma i2c module waits in
the ST IDLE state until the I2C address is received, then, while in the
ST WB ADR state, it shifts in the Wishbone address. A Wishbone transfer
is then simulated with the received the address and if this address exists (a
Wishbone ack is received), the first byte is shifted in while in the ST OP

5

5 Implementation

Table 4: States of elma i2c FSM
State Description

ST IDLE Wait for the i2c slave module to receive the I2C ad-
dress and go to ST WB ADR. The starting value at
the op o output of the i2c slave module is stored for
checking in ST OP

ST WB ADR Shift in the two address bytes sent via I2C and go to
ST SIM WB TRANSF

ST SIM WB TRANSF Start a Wishbone read transfer from address received
in previous state and go to ST OP if Wishbone ad-
dress exists (Wishbone ack received), or ST IDLE
otherwise (Wishbone err received)

ST OP Check the op o output of the i2c slave module.
If different from the value at the start, go to
ST SYSMON RD WB state (SysMon is reading from
elma i2c), otherwise continue shifting in bytes (Sys-
Mon writing to elma i2c)

ST SYSMON WR Continue reading up to four bytes sent by the SysMon
and go to ST SYSMON WR WB

ST SYSMON WR WB Perform a Wishbone write transfer to the register
with the address obtained in ST WB ADR

ST SYSMON RD WB Perform a Wishbone read transfer from the
address obtained in ST WB ADR and go to
ST SYSMON RD

ST SYSMON RD Shift out the four bytes of the Wishbone register when
the i2c slave module successfully finishes a write

state, followed by the next three bytes while in the ST SYSMON WR state.
Finally, the register is written to in the ST SYSMON WR WB state.

When the SysMon reads (Figure 7), the first few steps are the same as
for a read. The address is shifted in and checked in the Wishbone transfer
simulation state. In the case of a SysMon reading from a board, however, the
I2C transfer is restarted and the order is reversed (SysMon starts reading).
Thus, while in ST OP, the FSM detects a different value of op o and goes
into the ST SYSMON RD WB state. The value of the register is read here
and sent via I2C in the ST SYSMON RD state.

6

5 Implementation

Control byte Address 1 Address 0

Data 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 X X X X P

Data 1 Data 2 Data 3

P

...

Data

ST_WB_ADR

ST_SIM_WB_TRANSFER

ST_SYSMON_WR_WB

ST_OP ST_SYSMON_WR

ST_IDLE

Figure 6: FSM states when the SysMon writes to the elma i2c

Data 0

P

Data 1 Data 2 Data 3

Control byte Address 1 Address 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 X X X X

Control byte

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

1 P

Data

...
ST_OP

ST_SYSMON_RD

ST_SYSMON_RD_WB

ST_WB_ADR

ST_SIM_WB_TRANSFER

ST_IDLE

ST_SYSMON_RD_WB

Figure 7: FSM states when the SysMon reads from the elma i2c

7

References

References

[1] OpenCores, “Wishbone System-on-Chip (SoC) Interconnection Ar-
chitecture for Portable IP Cores.” http://cdn.opencores.org/

downloads/wbspec_b4.pdf.

[2] ELMA, “New SysMon User Manual Rev. 1.11.” http://www.ohwr.org/

documents/226.

[3] ELMA, “Access to board data using SNMP and I2C.” http://www.

ohwr.org/documents/227.

8

http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www.ohwr.org/documents/226
http://www.ohwr.org/documents/226
http://www.ohwr.org/documents/227
http://www.ohwr.org/documents/227

	Introduction
	Instantiation
	Testing the elma_i2c module
	ELMA I2C Protocol
	Implementation

