
SPI multifield HDL core

Carlos Gil Soriano
BE-CO-HT

carlos.gil.soriano@cern.ch

July 20, 2012

Abstract

A configurable SPI multifield HDL core is shown. This core is able
to specify three kind of fields to be sent according to SPI communica-
tion and been able to configure independently the lenght of every field.

The core is targeted for complexer uses of SPI communications, like
writing blocks of EEPROM memories which typically requiere three
fields.

The following subjects are addressed:

• The registers to control the module.

• Step-by-step instructions for proper use. access.

Revision history

HDL version Module Date

0.1 SPI master multi-
field

July 20, 2012

1

mailto:carlos.gil.soriano@cern.ch

Contents

1 Structure 3
1.1 Dependencies . 3

2 Registers 3
2.1 SPI0 . 3
2.2 SPI1 . 4
2.3 SPI2 . 4

3 Internal memory mapping 5

4 How to use it 5
4.1 Outputting a stream of data through SPI 5

2

1 Structure

The SPI module contains several blocks related the following way:

– spi master top.vhd
—– spi master regs.vhd
—– spi master slave core.vhd
——— FIFO dispatcher.vhd
——— gc counter.vhd
——— gc clk divider.vhd

The top module combines two components: spi master core and spi master regs.
The first one can be used independently from thei the top module, saving
some interconnection lines and allowing a direct way of using the module.
If access to the control registers SPI[X] through classic Wishbone interface
is desired, then the top module must be used.

Due to the target use of this SPI core (block transfers for memory in-
terfaces) all the three input fields are offered in both the top and the core
modules.

Internally, the data in every of the three set of fields is registered by the
control registers, either by directly writing into the SPI[X] register (in the
case of spi master core) or through wishbone (spi master top).

1.1 Dependencies

Three components used in this core belongs to general use in CTDAH board.
Due to that they are packed inside ctdah lib. The required components to
be imported are:

– FIFO dispatcher.vhd
– gc counter.vhd
– gc clk divider.vhd

2 Registers

2.1 SPI0

The SPI0 is a write-read register.

3

Bits Field Meaning Default

0 CPOL Clock POLarity when idle ”00000”

1 CPHA Clock PHAse ”00000”

4-2 x Reserved ”00000”

13-5 BDATA Bytes of DATA to be sent c INST LENGTH

22-14 BADDR Bytes of ADDRess to be sent c ADDR LENGTH

31-23 BINST Bytes of INSTruction to be sent c DATA LENGTH

2.2 SPI1

The SPI1 is a write-read register.

Bits Field Meaning Default

0 PUSH DATA PUSH DATA bytes into ’0’
internal SPI core memory

1 PUSH ADDR PUSH ADDRess bytes into ’0’
internal SPI core memory

2 PUSH INST PUSH INSTruction bytes into ’0’
internal SPI core memory

5-3 x Reserved ”000”

6 SEND DATA DATA bytes will be sent in ’0’
a write operation

7 SEND ADDR ADDR bytes will be sent in ’0’
a write operation

8 SEND INST INST bytes will be sent in ’0’
a write operation

9 SEND OP perform a SEND OPeration ’0’

11-10 y Reserved ”00”

15-12 CLK DIV CLocK DIVider X”0”

31-16 z Reserved X”0000”

2.3 SPI2

The SPI2 register is a read-only register.

Bits Field Meaning Default

0 SENT DATA DATA was SENT ’0’

1 SENT ADDR ADDRess was SENT ’0’

2 SENT INST INSTruction was SENT ’0’

3 SENT OP OPeration was SENT ’0’

11-4 x Reserved X”00”

15-12 CLK DIV CLocK DIVision X”0”

4

3 Internal memory mapping

The internal registers map is as follow:

Address Register Access

0x0 SPI0 Write-read

0x1 SPI1 Write-read

0x2 SPI2 Read-only

4 How to use it

4.1 Outputting a stream of data through SPI

1. Specify the divider it will be used to construct the SPI clk signal out
of the general clk signal.

2. Place the values to be sent in inst i, addr i and data i.

3. Register their values by one-clock asserting PUSH [X] bits in SPI1
register.

4. Specify which fields must be sent by asserting SEND [X] bits in SPI1
register. This bits must keep asserted during the whole send operation.

5. Specify the length in bytes of every field by writing SPI0.

6. Assert SEND OP bit field in SPI1 register. It must be keep asserted
until SENT OP is received.

5

	Structure
	Dependencies

	Registers
	SPI0
	SPI1
	SPI2

	Internal memory mapping
	How to use it
	Outputting a stream of data through SPI

