
D
RA
FT

CONV-TTL-BLO

User Guide

Carlos Gil Soriano
BE-CO-HT

carlos.gil.soriano@cern.ch

February 23, 2012

Abstract

This User’s Guide covers the following topics:

• HDL global structure.

• Golden image memory mapping.

• Register mapping of all the HDL cores.

• Instructions for accesing to the functionalities.

1

mailto:carlos.gil.soriano@cern.ch

D
RA
FT

Contents

1 HDL global structure 4
1.1 Control . 4
1.2 I2C slave . 4
1.3 Trigger . 5

1.3.1 Time-tagging Format 5
1.4 Multiboot manager . 5
1.5 EEPROM manager . 5
1.6 White Rabbit core . 5

2 Golden image memory mapping 6

3 Control module 7

4 I2C slave module 8
4.1 Structure . 8
4.2 Interrupting lines offered . 8

4.2.1 ind wb addr . 8
4.2.2 inst rd . 8
4.2.3 inst wr . 8

4.3 Registers . 8
4.3.1 STA . 8
4.3.2 PRE . 9
4.3.3 CTR0 . 9
4.3.4 CTR1 . 9
4.3.5 DRXA . 10
4.3.6 DRXB . 10
4.3.7 DTX . 10

4.4 Internal Memory Mapping . 10
4.5 How to use it . 11

4.5.1 Initialization . 11
4.5.2 Indirect Write from Master to Slave 11
4.5.3 Indirect Read from Master to Slave 12

5 Trigger module 14
5.1 Structure . 14

5.1.1 trigger top.vhd . 14
5.1.2 trigger regs.vhd . 14
5.1.3 TT RAMhandler.vhd 15

5.2 Behaviour . 15
5.3 Parameters . 15

5.3.1 g MAX GLITCH STAGES 15
5.3.2 g DEFAULT GLITCH MASK 15

2

D
RA
FT

5.3.3 g MIN PULSE LENGTH 16
5.3.4 g MAX PULSE LENGTH 16

5.4 g DEFAULT PULSE LENGTH 16
5.5 Registers . 16

5.5.1 STATUS . 16
5.5.2 CTR0 . 17
5.5.3 CTR1 . 17
5.5.4 RAM0 . 17
5.5.5 RAM1 . 18
5.5.6 RAM2 . 18

5.6 Internal Memory Mapping . 19
5.7 How to use it . 19

5.7.1 Initialization . 19
5.7.2 Changing the deglitch mask and stages length 19
5.7.3 Register writes step-by-step 20
5.7.4 Changing the pulse width 21

6 Multiboot manager 22
6.1 Structure . 22

6.1.1 multiboot top.vhd . 22
6.1.2 multiboot regs.vhd . 22
6.1.3 multiboot core.vhd . 22
6.1.4 Behaviour . 22

6.2 Parameters . 23
6.3 Registers . 23

6.3.1 CTRL . 23
6.3.2 STAT . 24
6.3.3 GENERAL1 . 24
6.3.4 GENERAL2 . 24
6.3.5 GENERAL3 . 24
6.3.6 GENERAL4 . 25

6.4 Internal Memory Mapping . 25
6.5 How to use it . 25

6.5.1 Submitting ICAP instructions 25

7 EEPROM manager 27

3

D
RA
FT

1 HDL global structure

The following schema is used as a reference for the HDL development:

Figure 1: CONV-TTL-BLO HDL structure

1.1 Control

It is the part that bridges the I2C frames to the correct wishbone module.
The tasks it is responsible of are:

• Correctly power-up the rest of the modules.

• Provide connectivity of all the wishbone registers via I2C. It manages
control access to the registers.

1.2 I2C slave

An I2C slave is needed to receive the frames from the VME64x SERA and
SERB pins in P1 connector. This module will communicates with control
hdl module in the following fashion:

• It connects as a wishbone slave to control hdl core and provides in-
terrupt lines for data reception and transmission.

4

D
RA
FT

The main reason of implementing a wishbone slave is that by dividing data
reception -i2c slave- from control access -control - the development is more
reliable and clear.
This module offers configuration registers to ease the task of data assembly
–for instance, the communication schema in ELMA crate.

1.3 Trigger

The trigger manages the pulse repetition. The parameters handled that
affect the pulse repetition are:

• Debouncing stages of the input pulse.

• Pulse length of the output pulse according to Standard Blocking
definition.

• Minimun spacing between pulses to let the magnetizing current
of the transformer be drained off. It is also refered in other documents
as Inactivity timeout upon output pulse is outputted.

The pulses must be time-tagged. It can be achieved either by a lossy time-
tagging via i2c, or with a precise one via White Rabbit. Every time-tag has
appended event identifiers (metadata).

1.3.1 Time-tagging Format

The format of the time-tags should be defined. At this moment, an imple-
mentation with 96 bits for timestamping with 32 bits of metadata is the
default. A record of the last 256 time-tags per channel is hold in the FPGA.

1.4 Multiboot manager

The task of the Multiboot manager is to manage a golden bitstream and
another one to update the FPGA from. From within this module a FPGA
reprogramming command is issued.

1.5 EEPROM manager

The module responsible to write into the EEPROM, read it back and repro-
gramming the memory module. It should be targeted to interface directly
with a MICRON M25P32-VMF6P memory. It will be able to write the
MAC address that will be used by White Rabbit and block memory parts
of the EEPROM.

1.6 White Rabbit core

Provides precise timestamping.

5

D
RA
FT

2 Golden image memory mapping

To access the devices thanks to control module the following memory map
applies:

FIRST LAST
NUMBER DEVICE WISHBONE WISHBONE

ADDRESS ADDRESS

0 Control 0x0100 0x01FF

1 I2C slave 0x0200 0x02FF

2 Trigger 1 0x0300 0x03FF

3 Trigger 2 0x0400 0x04FF

4 Trigger 3 0x0500 0x05FF

5 Trigger 4 0x0600 0x06FF

6 Trigger 5 0x0700 0x07FF

7 Trigger 6 0x0800 0x08FF

8 Multiboot manager 0x0900 0x09FF

9 EEPROM manager 0x0A00 0x0AFF

10 White Rabbit core 0x0B00 0x0BFF

11 EEPROM memory 0x1000 0x1FFF

6

D
RA
FT

3 Control module

7

D
RA
FT

4 I2C slave module

4.1 Structure

The i2c module contains several blocks related the following way:

– i2c slave top.vhd
—– i2c regs.vhd
—– i2c slave core.vhd
——— FIFO dispatcher.vhd
——— FIFO stack.vhd
——— gc counter.vhd
——— gc ff.vhd
——— i2c bit.vhd

4.2 Interrupting lines offered

4.2.1 ind wb addr

This interrupting signal issues when a indirect wishbone address has been
received. It is notified right after the first CTR0[BIA] + 1 bytes upon the
reception of the I2C byte address packet. This signal is vital for correctly
prefetching when a I2C read operation is requested.

4.2.2 inst rd

This signal is issued when a read operation directed by an external master
over the HDL slave core is finished. That means it will be generated after
the last data byte has been sent by the HDL core.

4.2.3 inst wr

This signal is issued when a write operation directed by an external master
over the HDL slave core is finished. That means it will be generated after
the last data byte has been received.

4.3 Registers

4.3.1 STA

The STA register is a read-only register. It control the general enable and
reset of the module. It also contains the current value of the finite state
machine of the i2c modue (useful for easy debugging).

8

D
RA
FT

Bits Field Meaning

0 EN General ENable

1 RST General ReSeT

2 RD WRN INST Reserved

3 A RX

4 A TX

8-5 x Reserved

15-9 i2c sla fsm i2c fsm

31-16 Not used

4.3.2 PRE

The PRE register is a write-read register. Right now it is not used.

Bits Field Meaning

15-0 PRE PREscaler value

31-16 - Not used

4.3.3 CTR0

The CTR0 register is a write-read register. It controls the indirect addres
and holds the I2C address (which in the case of CONV-TTL-BLO will be
connected to VME64x geographical address pins).

Bits Field Meaning

0 EN general ENable

1 RST general ReSeT

2 PEN Prescaler ENable

5-3 x Reserved

7-6 BIA Bytes Indirect Addressing

14-8 A[6:0] I2C address

15 x Reserved

31-16 - Not used

4.3.4 CTR1

The CTR1 register is a write-read register. It shows the fsm of the separate
read and write fsms.

Bits Field Meaning

7-0 RDS fsm status: ReaD Status

15-8 WDS fsm status: WRite Status

31-16 - Not used

9

D
RA
FT

4.3.5 DRXA

The DRXA register is a read-only register. It holds the last four received
bytes through the I2C. DRX0 has the most recent byte received from the
serial interface. DRX3 has the oldest byte received.

Bits Field Meaning

7-0 DRX0 Data RX register 0

15-8 DRX1 Data RX register 1

23-16 DRX2 Data RX register 2

31-24 DRX3 Data RX register 3

4.3.6 DRXB

The DRXB register is a read-only register. It holds the fifth and sixth latest
received bytes, respectively.

Bits Field Meaning

7-0 DRX4 Data RX register 0

15-8 DRX5 Data RX register 1

31-16 - Not used

4.3.7 DTX

The DTX register is a write-read register. It shows the fsm of the separate
read and write fsms.

Bits Field Meaning

7-0 RDS fsm status: ReaD Status

15-8 WDS fsm status: WRite Status

31-16 - Not used

4.4 Internal Memory Mapping

The internal registers map is as follow:

Address Register Access

0x0 STA Read-only

0x1 PRE Write-read

0x2 CTR0 Write-read

0x3 CTR1 Write-read

0x4 DRXA Read-only

0x5 DRXB Read-only

0x6 DTX Write-read

10

D
RA
FT

4.5 How to use it

4.5.1 Initialization

1. Perform a reset of the module while module is not enabled:
CTR0: write 0 to EN and 1 to RST.

2. Load the prescaler:
PRE: set a new value.

3. Set the I2C address of the slave module:
CTR0[A]: set the I2C address.

4. Set the rest of bits of CTR0, including EN:
CTR0: set rest of bits.

4.5.2 Indirect Write from Master to Slave

It is a one-phase transaction: one indirect writing is achieved by signaling
only one I2C start condition by the master.

1. The Master I2C device starts an I2C transaction. In the first byte it
specifies the type of transaction issued as a write.

2. Then, two bytes are received in the slave. At the end of the reception
of the last bit of this second byte (third since the I2C start condition),
the finite state machine in i2c slave core.vhd launches the interrupt
inst wb addr.

Address prefetching: at this point, the Wishbone Address can be
stored. It is found in DRX0 and DRX1 registers:

• DRX0 : holds the Wishbone Address Lowest Byte

• DRX1 : holds the Wishbone Address Highest Byte

3. Following the reception of the two bytes corresponding to the Wish-
bone Address, four more bytes will be received. They are the data
bytes. Once the last bit of this fourth byte is received (seventh byte
since the I2C start condition), the finite state machine in i2c slave core.vhd
launches the interrupt inst wr.

Address and Data fetching: at this point, the Wishbone Address
and the Data to be written in that address can be both fetched through
the DRX registers:

• DRX0 : holds the Data Lowest Byte

• DRX1 : holds the Data 2nd Lowest Byte

• DRX2 : holds the Data 2nd Highest Byte

11

D
RA
FT

• DRX3 : holds the Data Highest Byte

• DRX4 : holds the Wishbone Address Lowest Byte

• DRX5 : holds the Wishbone Address Highest Byte

4. The Master I2C device stops the I2C transaction.

4.5.3 Indirect Read from Master to Slave

It is a two-phases transaction: one indirect read is achieved by signaling
only two I2C start conditions by the master.

FIRST PHASE

1. The Master I2C device starts an I2C transaction. In the first byte it
specifies the type of transaction issued as a write.

2. Then, two bytes are received in the slave. At the end of the reception
of the last bit of this second byte (third since the I2C start condition),
the finite state machine in i2c slave core.vhd launches the interrupt
inst wb addr.

Address Prefetching: at this point, the Wishbone Address can be
stored. It is found in DRX0 and DRX1 registers:

• DRX0 : holds the Wishbone Address Lowest Byte

• DRX1 : holds the Wishbone Address Highest Byte

Data Prefetching: it is a good practice to do the data prefetching
of the Wishbone Address (in case this is accessible). The control logic
attached to the i2c slave wb module should perform a wishbone write
to the four DTX[X] registers:

• DTX0 : holds the Data Lowest Byte

• DTX1 : holds the Data 2nd Lowest Byte

• DTX2 : holds the Data 2nd Highest Byte

• DTX3 : holds the Data Highest Byte

so that the data in the transmission registers is up-to-date, in order
to be sent through I2C.

12

D
RA
FT

SECOND PHASE

1. The Master I2C device (re)starts an I2C transaction. In the first byte
it specifies the type of transaction issued as a read. At the end of the
reception of the last bit on the first byte of this second phase (third
byte sinc the I2C start condition from the first phase), the finite state
machine in i2c slave core.vhd launches the interrupt inst wb addr.

2. The i2c slave wb module sends the four data bytes in the following
order:

(a) Data Lowest Byte

(b) Data 2nd Lowest Byte

(c) Data 2nd Highest Byte

(d) Data Highest Byte

3. Once the last byte has been already send, the finite state machine in
i2c slave core.vhd launches the interrupt inst rd addr.

13

D
RA
FT

5 Trigger module

5.1 Structure

The trigger module contains several blocks related the following way:

– trigger top.vhd
—– trigger regs.vhd
—– trigger core.vhd
——— debouncer.vhd
——— monostable.vhd
—– TT RAMhandler.vhd
——— gc RAM.vhd (for IDs)
——— gc RAM.vhd (for TTs)

5.1.1 trigger top.vhd

The top module interconnects the three basic building blocks: registers,
core and generic RAM. Each trigger top.vhd module will control one output
Blocking driver.

Inside trigger top.vhd there are some constant that are used as generic
in both the registers and generic RAMs. The constants are explained later
in the section ’Parameters’ and are the following:

• c RAM SIZE

• c MAX GLITCH STAGES

• c DEFAULT GLITCH MASK

• c MIN PULSE LENGTH

• c MAX PULSE LENGTH

• c DEFAULT PULSE LENGTH

• c TAGS DATA WIDTH

5.1.2 trigger regs.vhd

It consist of a core that can be accessed via Wishbone and that contains all
the registers which control this trigger core. The minimum and maximum
values and proceeding for configuring them will be explained in the two next
following sections.

14

D
RA
FT

5.1.3 TT RAMhandler.vhd

The TT RAMhandler is the component that control reads and writes into
the RAM space used for time-tagging pulses. It is subdivided into two
separated blocks of RAM: one for identification of the input and output
pulse shape (so called ”ID Block”) and the other one for time-tagging (”TT
Block”).

The idea behind seperating the block memories lies in ease the task of
updating the code in case different widths for the ID and TT fields are
decided.

5.2 Behaviour

Once a pulse has been deglitched, which translates into a delay of wb clk *
cycles to match c DEFAULT GLITCH MASK , a monostable will reproduce
a pulse with a length determined by the CPL field in CTR0 register. The
duration of the output pulse will be hence, CTR0[CPL] * wb clk. After this
time, a preventive action has been taken to not damage the coupled inductors
in CONV-TTL-BLO. A timeout will be run in which no input pulse will be
replicated. The value of this timeout corresponds to CTR0[CPL] * wb clk,
which is the same as the outputted pulse.

Min. Deglitch Mask delay wb clk * 1

Max. Deglitch Mask delay wb clk * bits of c DEFAULT GLITCH MASK

Min. input pulse length c DEFAULT GLITCH MASK * wb clk

Output pulse length CTR0[CPL] * wb clk

Inactivity timeout upon output pulse is done CTR0[CPL] * wb clk

5.3 Parameters

5.3.1 g MAX GLITCH STAGES

It specifies the maximum stages used for debouncing an input signal. The
input signal is validated by bit 0 in CTR0. If CRT0[0] is set to 0. Inputs
won’t be replicated (it won’t even be deglitched).

The value of this parameters express the length in bits of the parameter
that holds the deglitching mask. The value of the Current deGlitching Mask
can be found in CGM in CTR0 register.

5.3.2 g DEFAULT GLITCH MASK

It specifies the default value that it is used for the Current deGlitching Mask
for the CGM field in CTR0 register. Only the lower CGM bits specified by

15

D
RA
FT

the values of g MAX GLITCH STAGES will be used as deglitching mask.
It should be remarked that the input will be validated against a mask, so
values not monotonical can be accepted. Examples are shown at the end of
this document.

5.3.3 g MIN PULSE LENGTH

It specifies the default value that it is used for the Minimum Pulse Length
for the MinPL field in CTR1 register.

This field overrides the value of CPL in CTR0 in case the user tries to
configure an output pulse with a width lower than MinPL. Therefore CTR0
will be MinPL.

BOUNDING MUST BE IMPLEMENTED

5.3.4 g MAX PULSE LENGTH

It specifies the default value that it is used for the Maximum Pulse Length
for the MaxPL field in CTR1 register.

This field overrides the value of CPL in CTR0 in case the user tries
to configure an output pulse with a width longer than MaxPL. Therefore
CTR0 will be MaxPL.

BOUNDING MUST BE IMPLEMENTED

5.4 g DEFAULT PULSE LENGTH

It specifies the default value that it is used for the Current Pulse Length for
the CPL field in CTR0 register.

It should be noted that its value is bounded by MinPL and MaxPL fields
of CTR1 register.

BOUNDING MUST BE IMPLEMENTED

5.5 Registers

5.5.1 STATUS

The STATUS register is a read-only register. It shows the basic configura-
tion of the trigger HDL core and the status of the trigger core RAM blocks.

16

D
RA
FT

Bits Field Meaning

0 EN General ENable

1 CLR General CLeaR

3-2 x Reserved

4 EN TT Enable Time-Tagging

5 CLR TT CLeaR Time-Tagging

7-6 x Reserved

8 EMPTY RAM empty flag

9 FULL RAM full flag

10 WA RAM wrapped around

15-11 x Reserved

31-16 CPL Current Pulse Length

5.5.2 CTR0

The CTR0 register is a read-write register. It allows setting up the basic
configuration of the trigger HDL core, its RAM blocks and both the deglitch-
ing mask and output pulse length to be used.

Bits Field Meaning

0 EN General ENable

1 CLR General CLeaR

3-2 x Reserved

4 EN TT Enable Time-Tagging

5 CLR TT Clear Time-Tagging

7-6 RDM time-tagging ReaD Mode

15-8 CGM Current Glitch Mask

31-16 CPL Current Pulse Length

5.5.3 CTR1

The CTR1 register is a read-write register. It allows setting up the bound-
aries that override invalid values of CPL field in CTR0.

Bits Field Meaning

15-0 MinPL Minimum Pulse Length

31-16 MaxPL Maximum Pulse Length

5.5.4 RAM0

The RAM0 register is a read-write register. It allows setting up the RAM
and the read request to it.

17

D
RA
FT

Bits Field Meaning

0 EN TT Enable Time-Tagging

1 CLR TT Clear Time-Tagging

3-2 RDM time-tagging ReaD mode

4 EMPTY RAM empty

5 FULL RAM full

6 WA RAM Wrapped Around

7 RQT ReQuesT read

31-8 x Reserved

5.5.5 RAM1

The RAM1 register is a read-only register. It shows the current read and
write address configured to be accessed.

Bits Field Meaning

15-0 CRA Current Read Address

31-16 CWA Current Write Address

5.5.6 RAM2

The RAM2 register is a read-write register. It allows setting up the RAM
adress range to be read.

Bits Field Meaning

15-0 SA Starting read Address

31-16 EA Ending read Address

18

D
RA
FT

5.6 Internal Memory Mapping

The internal registers map is as follow:

Address Register Access

0x0 STATUS Read-only

0x1 CTR0 Read-write

0x2 CTR1 Read-write

0x3 Not used

0x4 Not used

0x5 RAM0 Read-write

0x6 RAM1 Read-only

0x7 RAM2 Read-write

5.7 How to use it

5.7.1 Initialization

1. Disable trigger core before configuring:

CTR0: write 0 to EN and EN TT

2. Set the minimum and maximum pulse lengths:

CTR1: writes into MinPL and MaxPL

3. Set the deglitching mask and pulse length to be used:

CTR0: set CGM and CPL

4. Clearing RAM block up before starting:

RAM0: write 1 to CLR TT

5. Disable RAM clearup and enable module:

CTR0: write 1 to EN and EN TT, write 0 to CLR TT

5.7.2 Changing the deglitch mask and stages length

Three examples are given.

Example A • g MAX GLITCH STAGES : 6

19

D
RA
FT

• CTR0[CGM] : 0x0BAA

In this case, only the six less significant bits of CGM field will be used
as mask: ”11 1010”. This mask signal is checked against the sampled
input signal. If it matches, it is considered as a pulse and it will be
replicated.

Example B The common use will be in the form:

• g MAX GLITCH STAGES : 6

• CTR0[CGM] : 0xFFFF

Which translates into pulses of length 6 * wb clk or greater should
be replicated.

Example C Reducing the Deglitch Mask delay is achieved by configuring CGM
properly:

• g MAX GLITCH STAGES : 6

• CTR0[CGM] : 0x0007

which means pulses of length 3 * wb clk or greater should be repli-
cated.

5.7.3 Register writes step-by-step

1. Disable trigger core before configuring:

CTR0: write 0 to EN and EN TT

2. Set the minimum and maximum pulse lengths:

CTR1: writes into MinPL and MaxPL

3. Set the deglitching mask and pulse length to be used:

CTR0: set CGM and CPL

4. Reenable module:

CTR0: write 1 to EN and EN TT

20

D
RA
FT

5.7.4 Changing the pulse width

1. Disable trigger core before configuring:

CTR0: write 0 to EN and EN TT

2. Check/set the minimum and maximum pulse lengths:

CTR1: read/write into MinPL and MaxPL

3. Set the pulse length to be used:

CTR0: set CPL

4. Reenable module:

CTR0: write 1 to EN and EN TT

21

D
RA
FT

6 Multiboot manager

6.1 Structure

NOTE1: this module is platform specific. It only works with Spartan 6

NOTE2: in case the EEPROM memory is replaced, SPI opcode will
change. User should notice this issue.

The trigger module contains sever blocks related the following way:

– multiboot top.vhd
—– multiboot regs.vhd
—– multiboot core.vhd
——— ICAP SPARTAN6 (Xilinx primitive)

6.1.1 multiboot top.vhd

The top file of the module. It interconnects the Wishbone to internal register
module, multiboot regs.vhd, to the core logic in multiboot core.vhd.

No generics are implemented in this HDL module.

6.1.2 multiboot regs.vhd

In this module the registers neeeded for specifiying the memory addresses
in which the FPGA must boot to are defined.

An internal register is defined for selectively controlling operations to be
performed by this module (full ICAP reprogramming process, issuing ICAP
commands, refreshing ICAP registers). The set of operations that can be
issued is restricted for security reasons. The allowed operations are further
listed in the Register subsection.

6.1.3 multiboot core.vhd

It is responsible of accessing ICAP port through the internal ICAP SPARTAN6
Xilinx primitive. A finite state machine is implemented in accordance to
Chapter 7 of [1].

6.1.4 Behaviour

Following the instructions of [1] strictly leads to correct multiboot of the
FPGA. Firstly, registers GENERAL1, GENERAL2, GENERAL3 and GEN-
ERAL4 must be programmed with valid values. It should be keept in mind
that the SPI opcode in GENERAL4 register depends on the EEPROM chip
mounted on the board.
Then, a full multiboot command must be performed via ICAP interface
through a write in CTRL register in multiboot module.

22

D
RA
FT

6.2 Parameters

No generic parameters are offered in this module.

6.3 Registers

6.3.1 CTRL

The CTRL register is a read-write register for OP field and a read-only for
PEND bit. It specifies the operations that can be controlled by an user.

Bits Field Meaning

3-0 OP OPeration to be performed

4 PEND operation PENDing

Whenever an operation is specified by the user, it is passed to ICAP
Xilinx primitive through multiboot core.vhd and the bit flag PEND is set to
’1’ until it is completely finished.

Operations

The valid operations that can be requested are the following:

OP byte Operation

0x0 Full multiboot process as specified in [1]

0x1 Write GENERAL1 register from
multiboot regs.vhd into FPGA

0x2 Write GENERAL2 register from
multiboot regs.vhd into FPGA

0x3 Write GENERAL3 register from
multiboot regs.vhd into FPGA

0x4 Write GENERAL4 register from
multiboot regs.vhd into FPGA

0x7 Perform IPROG command

0xD Refresh STAT register
into multiboot regs.vhd

Full multiboot process, OP = 0x0, comprises commamnds:

1. OP = 0x1

2. OP = 0x2

3. OP = 0x3

4. OP = 0x4

5. OP = 0x7

23

D
RA
FT

6.3.2 STAT

The STAT register is a read-only register. A refresh operation should be
completed before retrieving correct STAT information.

Bits Field Meaning

0 CRC ERROR CRC ERROR detected in bitstream

1 ID ERROR IDCODE not validated

2 DCM LOCK DCMs and PLL are locked

3 GTS CFG B Global tristate

4 GWE Global Write Enable

5 GHIGH B GHIGH

6 DEC ERROR DEC ERROR

7 PART SECURED Decryption is set

8 HSWAPEN HWSAPEN

11-9 MODE MODE pins

12 INIT B INIT B

13 DONE DONE input pins

14 IN PWRDWN suspend status

15 SWWD STRIKEOUT config error because of invalid sync

6.3.3 GENERAL1

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

15-0 MBT ADDR L MultiBoot image ADDRess Lower half

6.3.4 GENERAL2

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

7-0 MBT ADDR L Multiboot image ADDRess Lower Half

15-8 SPIO SPI Opcode

6.3.5 GENERAL3

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

15-0 GLD ADDR L GolDen image ADDRess Lower half

24

D
RA
FT

6.3.6 GENERAL4

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

7-0 GLD ADDR H GoLDen image ADDRess Higher Half

15-8 SPIO SPI Opcode

6.4 Internal Memory Mapping

The Internal Memory Mapping is as follows:

Address Register Access

0x0 CTRL Read-only

0x1 STAT See STAT description

0x2 Not used

0x3 Not used

0x4 GENERAL1 Read-write

0x5 GENERAL2 Read-write

0x6 GENERAL3 Read-only

0x7 GENERAL4 Read-write

6.5 How to use it

It requieres three parameters to be specified:

• Address of the Golden Image

• Address of the Multiboot Image

• SPI Opcode of the EEPROM serial interface

Bad specifications of addresses will not reprogram the FPGA.

6.5.1 Submitting ICAP instructions

It can be either a two-step or a single-step process. Two-step processes
are related with changes in GENERAL[X] register. Submitting an ICAP
command is a single-step-process (IPROG instruction, for instance).

Example A: Full Multiboot Configuration
This is a scenario is useful when the EEPROM memory map has
changed for the allocation of the two FPGA bitstreams.

1. Write GENERAL1 register.

2. Write GENERAL2 register.

25

D
RA
FT

3. Write GENERAL3 register.

4. Write GENERAL4 register.

5. Write CTRL register.
CTRL should issue a Full multiboot process operation code
(0x0).

Example B: Change an individual Boot Look Up Address
This is a scenario is useful when the EEPROM memory map has
changed for the allocation of only one of the FPGA bitstreams.

1. Write GENERAL[X] register. Where X=1,3

2. Write GENERAL[X+1] register.

3. Write CTRL register.
CTRL should issue a Write GENERAL[X] operation code.

4. Write CTRL register.
CTRL should issue a Write GENERAL[X+1] operation code.

Example C: Reprogram FPGA without change in Bitstream Location
If the EEPROM memory map has not changed but we want to reload
one of the images, we just issue an IPROG instruction through the
ICAP interface.

1. Write CTRL register.
CTRL should issue an IPROG operation code(0x7).

26

D
RA
FT

7 EEPROM manager

27

D
RA
FT

References

[1] Spartan-6 FPGA Configuration User Guide. Technical Report UG380
v2.3, Xilinx Inc., July 2011. http://www.xilinx.com/support/

documentation/user_guides/ug380.pdf.

28

http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

	HDL global structure
	Control
	I2C slave
	Trigger
	Time-tagging Format

	Multiboot manager
	EEPROM manager
	White Rabbit core

	Golden image memory mapping
	Control module
	I2C slave module
	Structure
	Interrupting lines offered
	ind_wb_addr
	inst_rd
	inst_wr

	Registers
	STA
	PRE
	CTR0
	CTR1
	DRXA
	DRXB
	DTX

	Internal Memory Mapping
	How to use it
	Initialization
	Indirect Write from Master to Slave
	Indirect Read from Master to Slave

	Trigger module
	Structure
	trigger_top.vhd
	trigger_regs.vhd
	TT_RAMhandler.vhd

	Behaviour
	Parameters
	 g_MAX_GLITCH_STAGES
	 g_DEFAULT_GLITCH_MASK
	 g_MIN_PULSE_LENGTH
	 g_MAX_PULSE_LENGTH

	 g_DEFAULT_PULSE_LENGTH
	Registers
	STATUS
	CTR0
	CTR1
	RAM0
	RAM1
	RAM2

	Internal Memory Mapping
	How to use it
	Initialization
	Changing the deglitch mask and stages length
	Register writes step-by-step
	Changing the pulse width

	Multiboot manager
	Structure
	multiboot_top.vhd
	multiboot_regs.vhd
	multiboot_core.vhd
	Behaviour

	Parameters
	Registers
	CTRL
	STAT
	GENERAL1
	GENERAL2
	GENERAL3
	GENERAL4

	Internal Memory Mapping
	How to use it
	Submitting ICAP instructions

	EEPROM manager

