
SPI master multifield

HDL core

Carlos Gil Soriano
BE-CO-HT

carlos.gil.soriano@cern.ch

October 25, 2012

Abstract

A configurable SPI master multifield HDL core is depicted. Fea-
tures:

• Wishbone interface.

• Support to the four operation modes.

• Three independent write fields with selectable length.

• One independent read field with selectable length.

• Protection against bad configurations.

The core is specially targeted for writing blocks of EEPROM mem-
ories which typically requiere three fields. In the case you are using a
m25p32 memory, please refer to m25p32 core

mailto:carlos.gil.soriano@cern.ch

Revision history

HDL version Module Date

0.1 SPI master multifield July 20, 2012

0.9 SPI master multifield Sept. 20, 2012

2

Copyright CERN 2012.

This documentation describes Open Hardware and is licensed under the
CERN OHL v.1.1.

You may redistribute and modify this documentation under the terms of
the CERN OHL v.1.1. (http://ohwr.org/cernohl). This documentation
is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY,
INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Please see the CERN OHL variable.1.1 for applicable conditions.

i

http://ohwr.org/cernohl

Contents

1 Structure 1
1.1 Dependencies . 1
1.2 Operation and invalid configurations 1

1.2.1 Invalid configurations 2

2 Registers 3
2.1 SPI0 . 3
2.2 SPI1 . 3
2.3 SPI2 . 3
2.4 SPI3 . 4

3 Internal memory mapping 5

4 How to use it 6
4.1 Perform an operation over SPI 6

4.1.1 SPI0 register . 6
4.1.2 SPI1 register . 6

4.2 SPI2 register . 7
4.3 SPI3 register . 7

A IP core insights 8
A.1 Design structure . 8

A.1.1 clk fsm . 8
A.1.2 spi clk fsm . 8

List of Tables

1 SPI0 register . 3
2 SPI1 register . 4
3 SPI2 register . 4
4 SPI3 register . 5
5 Memory mapping . 5

List of Figures

1 clk fsm . 8
2 spi clk fsm . 9

ii

1 Structure

The SPI module contains several blocks related the following way:

– spi master pkg.vhd
– spi master top.vhd
—– spi master regs.vhd
—– spi master slave core.vhd
——— FIFO dispatcher.vhd
——— gc counter.vhd
——— gc clk divider.vhd

The top module combines two components: spi master core and spi master regs.
The first one can be used independently from their top module, saving some
interconnection lines and allowing a direct way of using the module. If ac-
cess to the control registers SPI[X] through classic Wishbone interface is
desired, then the top module must be used.

Due to the target use of this SPI core (block transfers for memory in-
terfaces) all the three input fields are offered in both the top and the core
modules.

Internally, the data in every of the three set of fields is registered by the
control registers, either by directly writing into the SPI[X] register (in the
case of spi master core) or through wishbone (spi master top).

1.1 Dependencies

Three components used in this core belong to general use in CTDAH board.
Due to that they are packed inside ctdah lib. The required components to
be imported are:

– FIFO dispatcher.vhd
– gc counter.vhd
– gc clk divider.vhd

1.2 Operation and invalid configurations

The core analyses both SPI0 and SPI1 and if a valid operation is detected,
it executes it.

Valid operations must have, at least, an instruction field with instruction
length different from zero.

1

1.2.1 Invalid configurations

To guarantee the reliability of the core, the following invalid configurations
are specified:

• A field (address write, data write or read) configured to be executed
with field lenght equaling zero. That field will be skipped.

• A field with length bigger than the default length values of SPI1, will
be cropped to the default length value.

• If an SPI operation is running, updates of SPI0 and SPI1 will not be
attended.

2

2 Registers

2.1 SPI0

The SPI0 is a write-read register.

Responsible of mode of SPI operation and the length of all configurable
fields (either write or read fields).

Bits Field Meaning Default

0 CPOL Clock POLarity when idle ”00000”

1 CPHA Clock PHAse ”00000”

4-2 BREAD Reserved c READ LENGTH

13-5 BDATA Bytes of DATA to be sent c INST LENGTH

22-14 BADDR Bytes of ADDRess to be sent c ADDR LENGTH

31-23 BINST Bytes of INSTruction to be sent c DATA LENGTH

Table 1: SPI0 register

Values of c READ LENGTH, c INST LENGTH, ADDR LENGTH and
c DATA LENGTH can be found/set in spi master pkg.vhd.

2.2 SPI1

The SPI1 is a write-read register.

Responsible of the set-up of the kind of SPI operation to be performed
and the prescaling for configuring the clock of the SPI interface. Contents of
internal FIFOs can be pushed to be sent, or not, to allow bigger flexibility
to the user (and save power in the case in which we are sending the same
contents over the SPI).

2.3 SPI2

The SPI2 register is a read-only register.

It tells when a transaction has finished and what has been sent. Due to
configuration checking inside the SPI core, some fields would have been not
send.

3

Bits Field Meaning Default

0 PUSH DATA PUSH DATA bytes into ’0’
internal SPI core memory

1 PUSH ADDR PUSH ADDRess bytes into ’0’
internal SPI core memory

2 PUSH INST PUSH INSTruction bytes into ’0’
internal SPI core memory

5-3 x Reserved ”000”

6 READ MISO READ bytes from MISO line ’0’

7 SEND DATA DATA bytes will be sent in ’0’
a write operation

8 SEND ADDR ADDR bytes will be sent in ’0’
a write operation

9 SEND INST INST bytes will be sent in ’0’
a write operation

10 SEND OP perform a SEND OPeration ’0’

11 y Reserved ”00”

15-12 CLK DIV CLocK DIVider X”0”

31-16 z Reserved X”0000”

Table 2: SPI1 register

Bits Field Meaning Default

0 MISO DUP MOSI Data UPdate ’0’

1 READ DONE READ process DONE ’0’

2 SENT DATA DATA was SENT ’0’

3 SENT ADDR ADDRess was SENT ’0’

4 SENT INST INSTruction was SENT ’0’

5 SENT OP OPeration was SENT ’0’

11-6 x Reserved X”00”

15-12 CLK DIV CLocK DIVision X”0”

Table 3: SPI2 register

2.4 SPI3

The SPI3 register is a read-only register.

It holds the data received by the MISO pin. Valid data can be read as
soon as rd SPI3 o output in spi master core.vhd goes high.

4

Bits Field Meaning Default

31-0 MOSI DATA Latest 32 bits received X”00”

Table 4: SPI3 register

3 Internal memory mapping

The internal registers map over the wishbone interface is as follows:

Address Register Access

0x0 SPI0 Write-read

0x1 SPI1 Write-read

0x2 SPI2 Read-only

0x3 SPI3 Read-only

Table 5: Memory mapping

5

4 How to use it

4.1 Perform an operation over SPI

It consists on writing the SPI0 register first, and then the SPI1 register.
Order must be preserved.

Status of the operation can be followed via SPI2 register. SPI3 register
offers the data read from the MISO line.

4.1.1 SPI0 register

It should be specified:

• Mode of operation (via CPOL and CPHA).

• Number of bytes to write (instruction BINST, address BADDR and
data BDATA) into MOSI line.

• Number of bytes to read (BREAD) from the MISO line.

Those values must be written into the SPI0 register and, then, the same for
SPI1 register.

4.1.2 SPI1 register

The following fields must be set up:

• Which contents of the internal FIFOs (instruction, address and data)
should be loaded into the SPI core to be sent over MOSI line: PUSH INST,
PUSH ADDR and PUSH DATA. If not pushed, last pushed value will
be written.

• Clock divider, CLK DIV, to be generated the SPI clock frequency from
the system clock frequency.

• Which fields should be written: SEND INST, SEND ADDR SEND DATA.

• Select if a read operation will be carried out: READ MOSI.

• Determine that an operation should be consider by the core: SEND OP

Note that invalid operations will be detected by the core (either they will
be rejected or modified to comply with the HW constraints).

6

4.2 SPI2 register

When a SPI operation has finished, a one clock signal (SENT OP bit) is
flagged for one system clock. During this one clock signal, all the fields that
have run in the operation can be checked in SPI2.

For optimum perfomance, polling of SENT OP should be carried out.

4.3 SPI3 register

SPI3 has the contents of the MISO read values.

It can be read in any moment but operation-consistent information can
be obtained when the SPI operation has finished.

7

A IP core insights

A.1 Design structure

The core is governt by a simple finite state machine, clk fsm, and a expansion
of one of it states, spi clk fsm.

A.1.1 clk fsm

The main functionality of clk fsm is:

• To place all the signals of the core to a known default state by means
of a reset state (R0 RESET, in red).

• To provide the VHDL predifine set-up and hold times of the chip select
line. This functionality is specially important in the case of the hold
time to let some memories to be programmed correctly when continuos
writes are performed into them (S1 SETUP and S3 HOLD, both in
grey).

• To access to SPI slaves (S2 SPI ACTIVITY, in golded-yellow).

Figure 1: clk fsm

A.1.2 spi clk fsm

Namely the expansion of clk fsm’s state S2 SPI ACTIVITY, it is respon-
sible of controlling the writes (including memory prefetching) and reads of
the MOSI and MISO lines, respectively.

8

When clk fsm goes into R0 RESET state, spi clk fsm resets to S0 IDLE
and it is ready to act over the SPI interface. When a valid instruction
is present and clk fsm’s S1 SETUP has change to S2 SPI ACTIVITY, the
refresh of internal FIFO memories is carried out (according to valid fields
to be sent and PUSH [x] values in SPI1 register. Then, in the case of write
fields the byte to be sent is pulled from the FIFO (in blue) and subsequently
sent. In the case of reads, SPI data is read and a one-clock byte reception is
issued (in blue). After that two states for clearing up all the values are run.

Figure 2: spi clk fsm

9

	Structure
	Dependencies
	Operation and invalid configurations
	Invalid configurations

	Registers
	SPI0
	SPI1
	SPI2
	SPI3

	Internal memory mapping
	How to use it
	Perform an operation over SPI
	SPI0 register
	SPI1 register

	SPI2 register
	SPI3 register

	IP core insights
	Design structure
	clk_fsm
	spi_clk_fsm

