
CONV-TTL-BLO

Multiboot HDL module

Carlos Gil Soriano
BE-CO-HT

carlos.gil.soriano@cern.ch

February 23, 2012

Abstract

The multiboot module is in charge of configuring multibooting ca-
pability and assert the reprogramming of the FPGA.

This document shows:

• Parameters used as generic

• The registers to control the module.

• Step-by-step instructions for proper use.

Revision history

HDL version Module Date

0.1 Multiboot manager February 23, 2012

1

mailto:carlos.gil.soriano@cern.ch

Contents

1 Structure 3
1.1 multiboot top.vhd . 3
1.2 multiboot regs.vhd . 3
1.3 multiboot core.vhd . 3
1.4 Behaviour . 3

2 Parameters 4

3 Registers 4
3.1 CTRL . 4

3.1.1 Operations . 4
3.2 STAT . 5
3.3 GENERAL1 . 5
3.4 GENERAL2 . 5
3.5 GENERAL3 . 5
3.6 GENERAL4 . 6

4 Internal Memory Mapping 6

5 How to use it 6
5.1 Submitting ICAP instructions 6

2

1 Structure

NOTE1: this module is platform specific. It only works with Spartan 6

NOTE2: in case the EEPROM memory is replaced, SPI opcode will
change. User should notice this issue.

The trigger module contains sever blocks related the following way:

– multiboot top.vhd
—– multiboot regs.vhd
—– multiboot core.vhd
——— ICAP SPARTAN6 (Xilinx primitive)

1.1 multiboot top.vhd

The top file of the module. It interconnects the Wishbone to internal register
module, multiboot regs.vhd, to the core logic in multiboot core.vhd.

No generics are implemented in this HDL module.

1.2 multiboot regs.vhd

In this module the registers neeeded for specifiying the memory addresses
in which the FPGA must boot to are defined.

An internal register is defined for selectively controlling operations to be
performed by this module (full ICAP reprogramming process, issuing ICAP
commands, refreshing ICAP registers). The set of operations that can be
issued is restricted for security reasons. The allowed operations are further
listed in the Register subsection.

1.3 multiboot core.vhd

It is responsible of accessing ICAP port through the internal ICAP SPARTAN6
Xilinx primitive. A finite state machine is implemented in accordance to
Chapter 7 of [1].

1.4 Behaviour

Following the instructions of [1] strictly leads to correct multiboot of the
FPGA. Firstly, registers GENERAL1, GENERAL2, GENERAL3 and GEN-
ERAL4 must be programmed with valid values. It should be keept in mind
that the SPI opcode in GENERAL4 register depends on the EEPROM chip
mounted on the board.
Then, a full multiboot command must be performed via ICAP interface
through a write in CTRL register in multiboot module.

3

2 Parameters

No generic parameters are offered in this module.

3 Registers

3.1 CTRL

The CTRL register is a read-write register for OP field and a read-only for
PEND bit. It specifies the operations that can be controlled by an user.

Bits Field Meaning

3-0 OP OPeration to be performed

4 PEND operation PENDing

Whenever an operation is specified by the user, it is passed to ICAP
Xilinx primitive through multiboot core.vhd and the bit flag PEND is set to
’1’ until it is completely finished.

3.1.1 Operations

The valid operations that can be requested are the following:

OP byte Operation

0x0 Full multiboot process as specified in [1]

0x1 Write GENERAL1 register from
multiboot regs.vhd into FPGA

0x2 Write GENERAL2 register from
multiboot regs.vhd into FPGA

0x3 Write GENERAL3 register from
multiboot regs.vhd into FPGA

0x4 Write GENERAL4 register from
multiboot regs.vhd into FPGA

0x7 Perform IPROG command

0xD Refresh STAT register
into multiboot regs.vhd

Full multiboot process, OP = 0x0, comprises commamnds:

1. OP = 0x1

2. OP = 0x2

3. OP = 0x3

4. OP = 0x4

5. OP = 0x7

4

3.2 STAT

The STAT register is a read-only register. A refresh operation should be
completed before retrieving correct STAT information.

Bits Field Meaning

0 CRC ERROR CRC ERROR detected in bitstream

1 ID ERROR IDCODE not validated

2 DCM LOCK DCMs and PLL are locked

3 GTS CFG B Global tristate

4 GWE Global Write Enable

5 GHIGH B GHIGH

6 DEC ERROR DEC ERROR

7 PART SECURED Decryption is set

8 HSWAPEN HWSAPEN

11-9 MODE MODE pins

12 INIT B INIT B

13 DONE DONE input pins

14 IN PWRDWN suspend status

15 SWWD STRIKEOUT config error because of invalid sync

3.3 GENERAL1

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

15-0 MBT ADDR L MultiBoot image ADDRess Lower half

3.4 GENERAL2

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

7-0 MBT ADDR L Multiboot image ADDRess Lower Half

15-8 SPIO SPI Opcode

3.5 GENERAL3

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

15-0 GLD ADDR L GolDen image ADDRess Lower half

5

3.6 GENERAL4

Bit scrambling is done in VHDL code. Bit order must be as specified below:

Bits Field Meaning

7-0 GLD ADDR H GoLDen image ADDRess Higher Half

15-8 SPIO SPI Opcode

4 Internal Memory Mapping

The Internal Memory Mapping is as follows:

Address Register Access

0x0 CTRL Read-only

0x1 STAT See STAT description

0x2 Not used

0x3 Not used

0x4 GENERAL1 Read-write

0x5 GENERAL2 Read-write

0x6 GENERAL3 Read-only

0x7 GENERAL4 Read-write

5 How to use it

It requieres three parameters to be specified:

• Address of the Golden Image

• Address of the Multiboot Image

• SPI Opcode of the EEPROM serial interface

Bad specifications of addresses will not reprogram the FPGA.

5.1 Submitting ICAP instructions

It can be either a two-step or a single-step process. Two-step processes
are related with changes in GENERAL[X] register. Submitting an ICAP
command is a single-step-process (IPROG instruction, for instance).

Example A: Full Multiboot Configuration
This is a scenario is useful when the EEPROM memory map has
changed for the allocation of the two FPGA bitstreams.

1. Write GENERAL1 register.

6

2. Write GENERAL2 register.

3. Write GENERAL3 register.

4. Write GENERAL4 register.

5. Write CTRL register.
CTRL should issue a Full multiboot process operation code
(0x0).

Example B: Change an individual Boot Look Up Address
This is a scenario is useful when the EEPROM memory map has
changed for the allocation of only one of the FPGA bitstreams.

1. Write GENERAL[X] register. Where X=1,3

2. Write GENERAL[X+1] register.

3. Write CTRL register.
CTRL should issue a Write GENERAL[X] operation code.

4. Write CTRL register.
CTRL should issue a Write GENERAL[X+1] operation code.

Example C: Reprogram FPGA without change in Bitstream Location
If the EEPROM memory map has not changed but we want to reload
one of the images, we just issue an IPROG instruction through the
ICAP interface.

1. Write CTRL register.
CTRL should issue an IPROG operation code(0x7).

7

References

[1] Spartan-6 FPGA Configuration User Guide. Technical Report
UG380 v2.3, Xilinx Inc., 2011. http://www.xilinx.com/support/

documentation/user_guides/ug380.pdf.

8

http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

	Structure
	multiboot_top.vhd
	multiboot_regs.vhd
	multiboot_core.vhd
	Behaviour

	Parameters
	Registers
	CTRL
	Operations

	STAT
	GENERAL1
	GENERAL2
	GENERAL3
	GENERAL4

	Internal Memory Mapping
	How to use it
	Submitting ICAP instructions

