
CONV-TTL-BLO Production Test Suite

HDL Developer’s Guide

Theodor-Adrian Stana
CERN, BE-CO-HT

May 3, 2013



Contents

1 Introduction 3

2 Memory Map 3

3 PTS General-Purpose Registers 4

4 One-wire Master 5

5 SPI Master 5

6 Clock Information Counters 6

7 I2C Master 6

8 Pulse Counters 6

9 Folder Structure 8

10 Getting Around the Code 9

2



1 Introduction

This document presents a high-level view of the firmware implemented on
the FPGA for the Production Test Suite (PTS) project for the CONV-
TTL-BLO board. The document starts with a description of the folder
structure and where the developer should look for specific files. In the
following section, the structure of the top-level HDL file is given along with
hints on where the developer should look in case changes are to be made
to the code. After that, the memory map is presented, followed by sections
describing the logic implemented to run the tests comprising PTS.

All the logic implemented on the FPGA is written in VHDL and can be
obtained freely by cloning the OHWR git repository for the CONV-TTL-
BLO PTS project at the following link: link ohwr repo

REFERENCE THE OTHER DOCUMENTS

2 Memory Map

Various peripherals on the CONV-TTL-BLO board can be accessed by send-
ing telnet commands to the VME crate; these commands are sent to the
converter board by means of the serial I2C interface on the VME P1 con-
nector. Each board peripheral is accessible via a memory-mapped Wishbone
interface. A vme64x i2c component (reference) is used alongside a Wishbone
crossbar component (reference) to translate the I2C transfers into Wishbone
transfers. Fig. 1 shows how these two components are connnected to various
other memory-mapped Wishbone slaves.

WB
master

I2C 
slave

WB
slave

WB master #1

WB master #2

WB master #3

WB master #4

SCL

SDA

vme64x_i2c

xwb_crossbar
peripheral #1

peripheral #2

peripheral #3

peripheral #4

Figure 1: Memory-mapping several on-board peripherals in FPGA firmware

The PTS firmware accesses all peripheral devices on the CONV-TTL-
BLO board and sends device-specific commands to test their functionality.
Table 1 shows a simplified version of the memory map, with the base ad-
dresses of each peripheral. Details about the memory map of each device
can be found by reading the description of the peripheral devices in the
following sections.

3



Table 1: Memory map of the PTS firmware
Address Name Description

0x000 pts regs General-purpose registers
0x010 onewire mst Onewire master to control thermal sensor
0x020 dac spi 125 SPI master to control the 125 MHz DAC
0x080 dac spi 20 SPI master to control the 20 MHz DAC
0x100 clk info 125 Counters used to observe changes in the 125 MHz

clock
0x120 clk info 20 Counters used to observe changes in the 20 MHz clock
0x140 sfp i2c I2C master interface for communicating with SFP

EEPROM
0x200 endpoint Endpoint for communicating via the SFP
0x400 minic MiniNIC for communicating via the SFP
0x800 dpram RAM for the endpoint and minic components
0xC00 pulse cntrs Pulse counters for TTL and blocking pulse repetition

3 PTS General-Purpose Registers

Two registers are implemented as general-purpose registers for the PTS.
The first is a control and status register (CSR), at offset 0x0, followed by a
board ID register at offset 0x4 (see Table 2). Both registers are 32 bits in
width.

Table 2: PTS general-purpose registers, base address 0x000
Offset Name Access Description

0x0 CSR R/W Control and Status Register
0x4 Board ID R/W Board ID register

The board ID register contains 32 read-and-writable bits which can be
used to identify the board as the CONV-TTL-BLO. It is by default set to
read as the string BLO2, the hex value 0x424C4F32.

Fig. 2 shows the control and status register of PTS. It consists of 16
bits of control data and 16 bits of status data. The control bits (bits 3..0)
should be written with the value of the current test. The test number is a
fractional integer number with a fractional part of one bit. In this format,
each test can consist of up to two parts, up to a maximum number of seven
tests. Fig. 3 shows how CSR test number values can be obtained. This test
number is used by the main PTS state machine implemented in the FPGA
firmware to assert various control signals, based on the currently running
test.

The reset bit can be used to reset all of the logic inside the FPGA when
set (logic high). Caution should therefore be taken when writing the CSR,
as an erroneous write might result in the whole logic resetting itself. When

4



21 16

015 3

CRRT_TESTRST

RTM

31

R/W R/W

R

R - read-only

R/W - read/write

Implemented bits

Unimplemented bits,
write as '0', read undefined

All reset values are '0', unless otherwise noted.

Figure 2: PTS CSR

the logic is reset via a write to this bit, the writereg telnet command will
return a Not acknowledged!, as the reset also resets the vme64x i2c module.

0110 
Integer part - 3

Fractional part - 0

3.0
Figure 3: CSR test number format

The RTM field in the CSR can be used to read the status of the RTM
detection lines and is relevant within the context of the blocking pulse and
RTM interface test.

4 One-wire Master

This one-wire master module can be used to communicate to the DS18B20U+
thermometer (IC12). Two registers are implemented as part of this module.
These registers along with the functionality of the one-wire master module
are described in the module’s documentation [1].

5 SPI Master

The two Analog Devices DACs (IC17, IC18) on the CONV-TTL-BLO board
can be controlled via a 3-wire SPI interface. The OpenCores SPI master
module is used to implement this interface. More information can be found
in the SPI master core’s documentation [2].

5



6 Clock Information Counters

Two counters are used to test that the clocks are reacting to changes in DAC
and PLL values. The counters can be controlled and checked by means of six
registers, shown in Table 3. An extra register at offset 0x1C can be used to
check correct communication with the clock info counter module. This reg-
ister is a read-only register which should return the hex value 0xC000FFEE
when read.

Table 3: Clock information counter registers
Offset Name Access Description

0x00 Counter full R Bit 0 high means counter is full
0x04 Clock error R Bit 0 high means a clock error occured
0x0C Max value R Maximum value of the counter
0x10 Current value R/W Current value of the counter
0x14 Counter reset R/W Setting bit 0 resets the counter to 0
0x18 Counter enable R/W Setting bit 0 starts the counter; clear-

ing bit 0 disables the counter
0x1C Module check R Should return 0xC000FFEE when

read

7 I2C Master

An I2C master interface is implemented to send commands to the SFP EEP-
ROM. The OpenCores I2C master core is used to implement the interface;
more details about the interface and the access registers can be found via
its online documentation [3].

8 Pulse Counters

This module is used to count the number of sent and received pulses. It is
useful in the context of the TTL and blocking pulse repetition test. Two
counters are implemented per each channel, one to count the number of
input pulses, and another to count the output pulses. A counter counts up
whenenver a rising edge occurs on the channel it is associated to.

On the CONV-TTL-BLO board, there are six TTL channels, four INV-
TTL channels and six blocking channels. The pulse counter Wishbone mod-
ule implements 32 registers to store the current values of the counters for
all these sixteen channels. The registers are stacked up starting from offset
zero, with the TTL CH1 output pulse counter occupying address offset 0x00,
the TTL CH1 input counter offset 0x04, followed by TTL CH2 output at
0x08 and TTL CH2 input at 0x0C, and so on, up to blocking CH6 input

6



counter, which is located at address offset 0x64. Fig. 4 shows a simplified
version of the pulse counter address map.

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter

Output Counter

Input counter
Blocking channel 6

Blocking channel 1

INV-TTL channel 4

INV-TTL channel 1

TTL channel 6

TTL channel 2

TTL channel 1

...

...

...

0xC00

0xC04

0xC08

0xC0C

0xC28

0xC2C

0xC30

0xC34

0xC48

0xC4C

0xC50

0xC54

0xC60

0xC64 }

}
}

}
}

}
}

31 0

Figure 4: Pulse counters memory map

7



9 Folder Structure

The folder structure used within the PTS firmware is presented below:

→ ip cores/

→ conv-ttl-blo/hdl/

→ bicolor led ctrl/

→ bicolor led ctrl.vhd

→ bicolor led ctrl pkg.vhd

→ glitch filt/

→ rtl/

→ glitch filt.vhd

→ pts/

→ rtl/

→ clk info wb slave.vhd

→ incr counter.vhd

→ pts regs.vhd

→ pulse cnt wb.vhd

→ top/

→ conv ttl blo v2.vhd

→ conv ttl blo v2.ucf

→ pulse gen

→ rtl/

→ pulse gen.vhd

→ pulse generator

→ rtl/

→ pulse generator.vhd

→ reset gen

→ rtl/

→ reset gen.vhd

→ vme64x i2c

→ rtl/

→ i2c slave.vhd

→ vme64x i2c.vhd

8



The ip cores folder contains repository files that the firmware uses, such
as the OpenCores SPI and one-wire masters. The modules that have been
developed as part of the CONV-TTL-BLO project and can be used in both
PTS and other firmware are present in their own folders as sub-nodes of the
conv-ttl-blo/hdl/ folder. In general, the module files are present under an
rtl/ sub-folder.

The pts/ folder is the main folder in the case of the PTS suite, as can be
seen from the fact that it is bolded in the folder structure above. It contains
top-level files in the top/ folder (HDL and UCF file for pin definitions) and
other PTS-specific modules in the rtl/ folder.

The pulse gen module implements the fixed-width, frequency and delay
pulse generator used to generate pulses on CH10 in the TTL pulse and the
pulses on the blocking output channels. The pulse generator module is the
module used to generate fixed-width pulses when a trigger is received; it is
the same pulse generator used in the release version of the firmware.

10 Getting Around the Code

All of the PTS-specific firmware can be found in the conv-ttl-blo/hdl/pts/
folder. The top-level file, conv-ttl-blo.vhd, is the main-part of the firmware
and thus shall be the topic of this short section, where its structure and
guidelines for making changes are given.

Most of the top-level ports of the file have been named according to the
schematic file netlist names. The exceptions from this are due to either net
names that could not be syntactically represented in VHDL, or net names
that have been made clearer from a VHDL standpoint. Input ports are
assigned to architecture signals and signals are assigned to output ports in
each code section, as appropriate.

architecture behav of conv_ttl_blo_v2 is

begin

Type declarations

Constant declarations

Component declarations

Signal declarations

Figure 5: Declarative part of the VHDL architecture

9



The top module architecture is divided into sections, delimited by visible
comments. For example, code pertaining to a certain test, code pertaining
to more than one test, or general top-level code can go into a code section.

The declarative part of the architecture is organized as shown in Fig. 5.
Types are declared right after the architecture declaration, followed by con-
stant declarations, followed by component declarations, after which the var-
ious signals are declared.

The architecture body starts with instantiation of components useful in
all the design, such as the reset generator and the I2C bridge component.
Then, the main state machine of the PTS firmware is described. It is used to
assign the enable signals for the pulse generators and control the sequencing
of LEDs. The state machine is controlled by the value of the CRRT TEST
field in the PTS CSR (see Sec. 3). The test numbers can be changed by
means of the constants at the top of the architecture declarative part.

10



References

[1] Iztok Jeras, “1-wire (onewire) master,” 2011. http://opencores.org/

websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%

2Ftrunk%2Fdoc%2Fsockit_owr.pdf.

[2] Simon Srot, “SPI Master Core Specification,” 2004. http:

//opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%

2Ftrunk%2Fdoc%2Fspi.pdf.

[3] Richard Herveille, “I2C Master Core Specification,” 2003.
http://opencores.org/websvn,filedetails?repname=i2c&path=

%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf.

11

http://opencores.org/websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf
http://opencores.org/websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf
http://opencores.org/websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf
http://opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://opencores.org/websvn,filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf
http://opencores.org/websvn,filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf

	Introduction
	Memory Map
	PTS General-Purpose Registers
	One-wire Master
	SPI Master
	Clock Information Counters
	I2C Master
	Pulse Counters
	Folder Structure
	Getting Around the Code

