
I2C Slave Core

Theodor-Adrian Stana
CERN, BE-CO-HT

June 4, 2013

Contents

1 Introduction 3

2 I2C Bus Protocol 3

3 Instantiation 5

4 Operation 7
4.1 Read mode . 7
4.2 Write mode . 8

5 Implementation 9

2

1 Introduction

This document presents the i2c slave VHDL module, implementing a simple
I2C slave core capable of responding to I2C transfers generated by a master.
The module is conceived to be controlled by an external module. Basic
shifting of bits into the module is handled during read transfers (from the
slave’s point of view), at the end of which the user is presented with the
received byte. Similarly, in the case of a write transfer, the user inputs a
byte to be sent, and the module handles shifting out of each of the bits.

The i2c slave module does not implement clock stretching, all informa-
tion provided by the module should be handled externally within the time
span of an I2C bit transfer.

2 I2C Bus Protocol

The I2C bus protocol is a two-wire protocol defined by Philips/NXP. The
original specification [1] defines all aspects of the protocol, from hardware
connections on the bus, to bit- and byte-level data transfers and electrical
characteristics of the bus. A summary about the widely-used protocol is
given here.

Devices on the I2C bus are connected together via two pins on the bus:
the SCL (serial clock) and SDA (serial data) pins. The I2C bus uses a
master-slave topology, with I2C masters driving the SCL line to send or
receive bits on the SDA line. Both the SCL and SDA lines on an I2C device
must be open-collector outputs.

As Fig. 1 shows, one pull-up resistor on the bus connects the line to VCC
and I2C devices connect the SCL and SDA lines to ground when they drive
the lines. In this way, a device can set a logic low level on the bus by driving
the pin and a logic high level by releasing the pin.

To initiate a transfer, a master on the bus generates a start condition,
driving the SDA line low while the SCL line is high. Then, a series of SCL
pulses is used to send or receive bits on the bus, with one SCL pulse sent
for each bit. The signal on the SDA line must be stable for the duration

Master 1

SCL SDA

Master 2

SCL SDA

Slave 1

SCL SDA

Slave 2

SCL SDA

Slave 3

SCL SDA

Figure 1: I2C bus topology

3

SDA

SCL

Start (S) or repeated start (Sr)
condition Valid bit transfer Stop condition (P)

Figure 2: Bit-level transfers on the I2C bus

of the SCL high pulse for the bit to be properly received at the receiver
side. When the master has finished transferring bits it must release control
of the bus by issuing a stop condition. This is done by releasing the SDA
line while the SCL line is high. Alternatively, if the master has finished the
transfer and still wants to continue sending data, it can issue a repeated
start condition, which is identical to the start condition. The various types
of bit-level transfers are summarized in Fig. 2.

Since there can be more than one slave on the bus, each bus is assigned
an address to which it responds when addressed. Two forms of addressing
are defined in the I2C bus specification, a 7-bit addressing mode and a 10-bit
addressing mode. Of the two, the 7-bit addressing mode is the most widely
used and also the only mode that the i2c slave module supports.

By this mode, after the master issues the start condition on the bus, it
sends a series of seven address bits MSB-first on the bus, followed by an
eighth bit stating whether the master wishes to read from (’1’) or write to
(’0’) the slave. After this series of eight bits, if a slave with this address
exists on the bus, it must acknowledge (ACK) the transfer by driving the
SDA line low. If no master with this address exists, the SDA line remains
high (not acknowledge–NACK) and the master aborts the transfer. Fig. 3
shows how a master sends the address byte to the slave and how a slave
acknowledges the transfer.

SDA

SCL

1 2 3

MSB

...

7 8 9

...

LSB R/W

Master drives address bits Slave ACK
Master drives

R/W bit

Figure 3: Sending of the address byte by the master

4

From master to slave

From slave to master

Either master to slave, or
slave to master

S PSlave address R/W A Data A/AA/AA/A Data A/ASr Slave address R/W A

One or more bytes of
data and ACK/NACK

One or more bytes of
data and ACK/NACK

Figure 4: Bytes transferred on the I2C bus

After a slave acknowledges its address, actual data transfer can begin.
Based on the R/W̄ bit, the master either reads or writes a byte from/to
the slave. After the byte is written, the receiver (master or slave) must ac-
knowledge the byte in the same manner as a slave acknowledges its address.
A low level on the 9th SCL cycle means an ACK, while a high level on the
9th SCL cycle means an NACK. Any number of bytes can be sent between
transmitter and receiver. The transfer ends with the master sending a stop
condition on the bus, after the ACK/NACK bit has been sent. The master
can issue a stop condition as a result of both an ACK and an NACK. A
stop condition can however not follow a start condition without transferring
data.

An example data transfer is shown in Fig. 4. The master first issues a
start condition and sends the address, which is acknowledged by the slave.
Data transfer then starts, with either the master or the slave sending data.
At one point, the master decides to reverse the order of data transfer and
issues a repeated start with the R/W̄ bit flipped. A number of data bytes
are transferred, and the master ends the transfer with the stop condition.

3 Instantiation

This section offers information useful for instantiating the i2c slave core
module. Table 1 presents a list of ports of the i2c slave module.

I2C-specific ports should be instantiated as outlined in Fig. 5, via tri-
state buffers enabled by the scl en o lines sda en o.

scl_o

scl_i

scl_en_o

SCL sda_o

sda_i

sda_en_o

SDA

Figure 5: Connecting the I2C ports

5

To instantiate a tri-state buffer in VHDL:

SCL <= scl_o when (scl_en_o = ’1’) else

’Z’;

scl_i <= SCL;

SDA <= sda_o when (sda_en_o = ’1’) else

’Z’;

sda_i <= SDA;

and in Verilog:

assign SCL = (scl_en_o) ? scl_o : 1’bz;

assign scl_i = SCL;

assign SDA = (sda_en_o) ? sda_o : 1’bz;

assign sda_i = SDA;

The rest of the ports should be connected in a normal manner to an ex-
ternal controlling module. A component declaration of the i2c slave module
is readily available in the i2c slave pkg.vhd package file. The package also
defines constants for the statuses readable at the stat o pin. Refer to Sec. 4
for details regarding the various statuses.

Table 1: Ports of i2c slave module
Name Size Description

clk i 1 Clock input
rst n i 1 Active-low reset input
scl i 1 SCL line input
scl o 1 SCL line output
scl en o 1 SCL line output enable
sda i 1 SDA line input
sda o 1 SDA line output
sda en o 1 SDA line output enable
i2c addr i 7 I2C slave address of the module, compaired

against received address
ack n i 1 ACK to be sent to the master in case of master

write transfers
op o 1 State of the R/W̄ bit at the end of the address

byte
tx byte i 8 Byte of data to be sent over I2C
rx byte o 8 Byte received over I2C
done p o 1 One clk i cycle-wide pulse, signaling the slave

module has performed a valid transfer
stat o 3 Current state of communication

6

4 Operation

The i2c slave waits for a start condition to be performed on the I2C bus
by a master module. The address is shifted in and if it matches the slave
address set via the i2c addr i input, the done p o output is set for one clk i
cycle and the stat o output signals an address match. Based on the eighth
bit of the first I2C transfer byte, the module then starts shifting in or out
each byte in the transfer, setting the done p o output for one clock cycle
after each received/sent byte. The stat o output can be checked to see the
byte has been sent/received correctly.

As can be seen from the above description, done p o is high after every
completed I2C transfer. As a general rule, it should be checked periodically
and when high, the stat o (possibly together with the op o) output should
be checked to see the appropriate action to be taken. The various statuses
possible at the stat o output are listed in Table 2.

Table 2: Statuses at the stat o pin
stat o Description

00 Slave idle, waiting for start condition
01 Address sent by the master matches that at

i2c addr i ; op o valid
10 Read done, waiting for ACK/NACK to send to

master
11 Write done, waiting for next byte to send to mas-

ter

The ack n i port is used for sending the ACK to the master. The polarity
of the bit is that of the I2C ACK signal (’0’ – ACK, ’1’ – NACK). A ’0’
should be set at the input also when the address is ACKed, otherwise the
slave will not acknowledge its own address. This implies that the ack n i
pin can be used to isolate the slave from the bus.

4.1 Read mode

When the eighth bit of the address byte is low (R/W̄ = ’0’), the slave goes
into read mode. Each bit of the byte sent by the master is shifted in on
the falling edge of SCL. After eight bits have been shifted in, done p o is
set for one clk i cycle and the status signals a successful read (”10”). The
received byte should be read from the rx byte o output and an ACK (’0’) or
NACK (’1’) should be sent to the master via the ack n i pin. The i2c slave
module does not implement clock stretching, so the ack n i pin should be
set before the SCL line goes high.

Following are the steps that should be performed to read one or more
bytes sent by the master:

7

1. Wait for done p o to go high, signaling the I2C address of the slave
has been read.

2. Check that stat o is ”01” (address good) and that op o is ’0’ (master
write, slave read). Set a ’0’ at the ack n i input to send the ACK to
the address; if ack n i is ’1’, the slave does not acknowledge its own
address.

3. Wait for done p o to go high.

4. Check that stat o is ”10” (read done), read the received byte from
rx byte o and write a ’0’ at ack n i to send an ACK, or a ’1’ to send
an NACK.

5. The transfer is repeated until the master sends a stop condition.

4.2 Write mode

When a master reads from the slave, the eighth bit of the address byte is
high (R/W̄ = ’1’). In this case, the i2c slave module goes in write mode,
where the byte at the tx byte i port is sent to the master. When the byte
has been successfully sent, the done p o is high for one clock cycle and the
stat o port has the value ”11”, signaling the slave has successfully sent a
byte and is awaiting the loading of another byte.

Below are the steps which should be followed to write one or more bytes
to a master:

1. Wait for done p o to go high, signaling the I2C address of the slave
has been read.

2. Check that stat o is ”01” (address good) and op o is ’1’ (master read,
slave write). Set the byte to be sent to the master at the tx byte i
input. Set a ’0’ at ack n i to send the ACK to the address; if ack n i
is ’1’, the slave does not acknowledge its own address.

3. Wait for done p o to go high.

4. Check that stat o is ”11” (write done) and set the next byte to be sent
at the tx byte i port.

5. If the master acknowledges the transfer, the next byte is sent, other-
wise, the master will send a stop condition, so the i2c slave module is
reset.

8

5 Implementation

This section presents implementation details of the i2c slave module. A
simplified block diagram of the module is presented in Fig. 6.

Deglitched versions of the SCL and SDA lines control operation of the
central finite-state machine (FSM), which sets the outputs and controls the
rest of the components in the module.

glitch filt

glitch_filt

rxsr txsrsda_i

scl_i

FSM

sda_o

sda_en_o

en en

op_o

done_o

i2c_addr_i

ack_n_i

ld

rx_byte_o tx_byte_i

stat_o

Figure 6: Block diagram of i2c slave module

The FSM is sensitive to start and stop conditions and falling edges of
the SCL line. It controls how outputs are set, when the reception and
transmission shift registers (RXSR/TXSR) are loaded and when they shift,
and acknowledging to the address and bytes sent by the master. Table 3
lists the states of the FSM and the operations performed in each state.

9

Table 3: i2c slave module state machine
State Description

IDLE Idle state, FSM default state after reset and the
state returned to after reception of a stop condi-
tion.

STA State reached after a start condition is received.
On the falling edge of SCL, the FSM transitions
to ADDR state.

ADDR Shift in 7 address bits and R/W̄ bit and go to
ADDR ACK state. Each bit is shifted in on
the falling edge of SCL. If the received address
matches, op o is set and done p o as well.

ADDR ACK Check received address and send ACK if it corre-
sponds to i2c addr i. If the R/W̄ bit is high, go
to RD state, otherwise go to WR LOAD TXSR
state. If received address does not match, NACK
and go to IDLE state.

RD Shift in eight bits sent by master and go to
RD ACK state. Each bit is shifted in on the
falling edge of SCL. When eight bits have been
shifted in, set done p o.

RD ACK Read ack n i and forward it to sda o
(ACK/NACK from external controller). If
ack n i is ’0’, then go back to RD state, else to
IDLE state.

WR LOAD TXSR Load TX shift register with data at tx byte i in-
put and go to WR state.

WR Shift out the eight bits of the TXSR starting with
MSB and go to WR ACK state. TXSR shifts left
on falling edge of SCL. When eight bits have been
shifted out, done p o is set.

WR ACK Clear done p o. Read ACK bit sent by master. If
’0’, go back to WR state, otherwise go to IDLE
state.

10

References

[1] “I2C Bus Specification, version 2.1,” Jan. 2000. http://www.nxp.com/

documents/other/39340011.pdf.

11

http://www.nxp.com/documents/other/39340011.pdf
http://www.nxp.com/documents/other/39340011.pdf

	Introduction
	I2C Bus Protocol
	Instantiation
	Operation
	Read mode
	Write mode

	Implementation

