
CONV-TTL-BLO PTS HDL Guide

June 27, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

03-05-2013 0.1 First draft
27-06-2013 0.2 Changed title page, layout, and updated info

Contents

Contents

1 Introduction 1

2 PTS system 1

3 Memory map 1

4 PTS General-Purpose Registers 3

5 One-Wire Master 4

6 SPI Master 5

7 Clock Information Counters 6

8 I2C Master 7

9 Pulse Counters 8

10 Folder Structure 10

11 Getting Around the Code 12

i

List of Tables

List of Figures

1 Memory-mapping several on-board peripherals in FPGA firmware 1
2 PTS CSR . 3
3 Declarative part of VHDL architecture 12
4 Body of VHDL architecture 13

List of Tables

1 Memory map of the PTS firmware 2
2 General-purpose registers for PTS 3
3 CSR fields . 4
4 Clock information counter registers 6
5 Pulse counter registers . 9

List of Abbreviations

FPGA Field-Programmable Gate Array
PTS Production Test Suite
SysMon (ELMA) System Monitor

ii

3 Memory map

1 Introduction

This document presents a high-level view of the firmware implemented on
the FPGA for the Production Test Suite (PTS) project for the Conv-TTL-
Blo board. More involved details can be found by consulting the PTS HDL,
which can be obtained by cloning the OHWR git repository for the Conv-
TTL-Blo PTS project REFERENCE.

REFERENCE THE OTHER DOCUMENTS

2 PTS system

The PTS system is contained within a rack containing an ELMA crate,
the laptop with the PTS software installed on it and all other accessories
necessary for running tests. More information about the PTS system can
be found in REFER USER GUIDE.

The ELMA crate within the PTS contains a system monitor (SysMon)
board that monitors voltage levels, temperatures and controls fan speeds for
the crate fans. The crate can be accessed via SNMP to send commands to
the VME boards inside the crate.

This is relevant in the case of the PTS system in that the CONV-TTL-
BLO board can be accessed through the serial (I2C) interface on the VME
P1 connector. The PTS software on the PTS laptop connects to the crate
through telnet and sends readreg and writereg commands to the crate; the
commands are translated by the SysMon to I2C transfers to the CONV-
TTL-BLO. More information about this can be found in [1] and [?].

3 Memory map

Each board peripheral is accessible via a memory-mapped Wishbone in-
terface. A vme64x i2c component (reference) is used alongside a Wishbone
crossbar component (reference) to translate the I2C transfers into Wishbone
transfers. Fig. 1 shows how these two components are connected to various
other memory-mapped Wishbone slaves.

vme64x_i2c

I2C
slave

WB
master

SCL
SDA

WB
slave

WB master

WB master

WB master

WB master

peripheral #1

peripheral #2

peripheral #3

peripheral #n

xwb_crossbar

... ...

Figure 1: Memory-mapping several on-board peripherals in FPGA firmware

1

3 Memory map

The PTS firmware accesses all peripheral devices on the Conv-TTL-Blo
board and sends device-specific commands to test their functionality. Ta-
ble 1 shows a simplified version of the memory map, with the base addresses
of each peripheral. Details about the memory map of each device can be
found by reading the description of the peripheral devices in the following
sections.

Table 1: Memory map of the PTS firmware
Address Name Description

0x000 pts regs General-purpose registers
0x010 onewire mst One-wire master for thermal sensor
0x020 dac spi 125 SPI master to control the 125 MHz DAC
0x080 dac spi 20 SPI master to control the 20 MHz DAC
0x100 clk info 125 Counters used to observe changes in the 125 MHz

clock
0x120 clk info 125 Counters used to observe changes in the 20 MHz

clock
0x140 sfp i2c I2C master interface for communicating to SFP

EEPROM
0x200 endpoint Endpoint for communicating via the SFP
0x400 minic MiniNIC for communicating via the SFP
0x800 dpram Dual-port RAM for the endpoint and minic com-

ponents
0xC00 pulse cntrs Pulse counters for TTL and blocking pulse repe-

tition tests

2

4 PTS General-Purpose Registers

4 PTS General-Purpose Registers

Two registers are implemented as general-purpose registers for the PTS. The
first is a control and status register (CSR), at offset 0x0, followed by a board
ID register at offset 0x4 (see Table 2). Both registers are 32 bits wide.

Table 2: General-purpose registers for PTS
Offset Name Access Description

0x0 csr R/W Control and Status Register
0x4 board id R/W Board ID register

The board ID register contains 32 read-and-writable bits which can be
used to identify the board as the Conv-TTL-Blo. It is by default set to read
as the ASCII string BLO2, the hex value 0x424C4F32.

SWITCH

31 162122

0123415

RTM

RST

30 29 28 27 26 25 24 23

Implemented bits

Unimplemented bits

SLDEN PLDEN TPENBPENBLD

14 13 12 11 10 9 8 7 6 5

20 19 18 17

R/W R/W R/W R/W R/W R/W

R R

R - read-only

W - write-only

R/W - read/write

Unimplemented bits read undefined; write as '0'

All reset values are '0', unless otherwise noted

Figure 2: PTS CSR

Fig. 2 shows the control and status register of PTS. It consists of 16 bits
of control data and 16 bits of status data. The first four bits are used to
enable various test functionality. The reset bit can be used to reset all of
the logic inside the FPGA when set (logic high). Caution should therefore
be taken when writing the CSR, as an erroneous write might result in the
whole logic resetting itself. When the logic is reset via a write to this bit,
the writereg telnet command will return a Not acknowledged!, as the reset
bit also resets the vme64x i2c module.

The RTM field in the CSR can be used to read the status of the RTM
detection lines and is relevant within the context of the blocking pulse and
RTM interface test.

3

5 One-Wire Master

Table 3: CSR fields
Name Access Description

TPEN R/W 1 – enable TTL pulse generation
0 – disable TTL pulse generation

BPEN R/W 1 – enable blocking pulse generation
0 – disable blocking pulse generation

BLD R/W Rear pulse LED line value
PLDEN R/W 1 – enable pulse LED sequencing

0 – disable pulse LED sequencing
SLDEN R/W 1 – enable status LED sequencing

0 – disable status LED sequencing
RST R/W 1 – Reset FPGA logic

Note: Will reset all FPGA logic;
therefore, it also resets itself.

5 One-Wire Master

This one-wire master module can be used to communicate to the DS18B20U+
thermometer (IC12). Two registers are implemented as part of this mod-
ule. These registers and the functionality of the one-wire master module are
described in the module’s documentation [2].

4

6 SPI Master

6 SPI Master

The two Analog Devices DACs (IC17, IC18) on the Conv-TTL-Blo board
can be controlled via a 3-wire SPI interface. The OpenCores SPI master
module is used to implement this interface. More information can be found
in the SPI master core’s documentation [3].

5

7 Clock Information Counters

7 Clock Information Counters

Two clock information counter modules are used to test that the clocks are
reacting to changes in DAC and PLL values. The counters can be controlled
and checked by means of six registers, shown in Table 4. An extra register at
offset 0x1C can be used to check correct communication with the clock info
counter module. This register is a read-only register which should return
the hex value 0xC000FFEE when read.

Table 4: Clock information counter registers
Offset Name Access Description

0x00 Counter full R Bit 0 set signals a full counter
0x04 Clock error R Bit 0 set signals a clock error occured
0x08 Unused – Unused in PTS
0x0C Max value R/W Maximum value of the counter
0x10 Current value R/W Current value of the counter
0x14 Counter reset R/W Setting bit 0 clears the counter to 0
0x18 Counter enable R/W bit 0 set enables up-counting

bit 0 cleared disables up-counting
0x1C Module check R Should return 0xC000FFEE when

read

6

8 I2C Master

8 I2C Master

An I2C master interface is implemented to send commands to the SFP EEP-
ROM. The OpenCores I2C master core is used to implement the interface.
More details about the module and the access registers can be found via its
online documentation [4].

7

9 Pulse Counters

9 Pulse Counters

This module is used to count the number of sent and received pulses. It is
useful in the context of the TTL and blocking pulse repetition test. On the
Conv-TTL-Blo board, there are six TTL channels, four INV-TTL channels
and six blocking channels, which are seen as sixteen pulse channels in the
pulse counter module.

Two counters are implemented per each channel, one to count the num-
ber of input pulses, and another to count the output pulses. A counter
counts up whenever a rising edge occurs on the channel it is associated to.
The pulse counter Wishbone module implements 32 registers to store the
current values of the counters for all these sixteen channels. The registers
are stacked up starting from offset zero, with the TTL CH1 output pulse
counter occupying address offset 0x00, the TTL CH1 input counter offset
0x04, followed by TTL CH2 output at 0x08 and TTL CH2 input at 0x0C,
and so on, up to blocking CH6 input counter, which is located at address
offset 0x64. Table 5 shows a the pulse counter address map.

8

9 Pulse Counters

Table 5: Pulse counter registers
Offset Name Access Description

0x00 ch1 out R/W TTL channel 1 output counter
0x04 ch1 in R/W TTL channel 1 input counter
0x08 ch2 out R/W TTL channel 2 output counter
0x0C ch2 in R/W TTL channel 2 input counter
0x10 ch3 out R/W TTL channel 3 output counter
0x14 ch3 in R/W TTL channel 3 input counter
0x18 ch4 out R/W TTL channel 4 output counter
0x1C ch4 in R/W TTL channel 4 input counter
0x20 ch5 out R/W TTL channel 5 output counter
0x24 ch5 in R/W TTL channel 5 input counter
0x28 ch6 out R/W TTL channel 6 output counter
0x2C ch6 in R/W TTL channel 6 input counter
0x30 ch7 out R/W INV-TTL channel A output counter
0x34 ch7 in R/W INV-TTL channel A input counter
0x38 ch8 out R/W INV-TTL channel B output counter
0x3C ch8 in R/W INV-TTL channel B input counter
0x40 ch9 out R/W INV-TTL channel C output counter
0x44 ch9 in R/W INV-TTL channel C input counter
0x48 ch10 out R/W INV-TTL channel D output counter
0x4C ch10 in R/W INV-TTL channel D input counter
0x50 ch11 out R/W Blocking channel 1 output counter
0x54 ch11 in R/W Blocking channel 1 input counter
0x58 ch12 out R/W Blocking channel 2 output counter
0x5C ch12 in R/W Blocking channel 2 input counter
0x60 ch13 out R/W Blocking channel 3 output counter
0x64 ch13 in R/W Blocking channel 3 input counter
0x68 ch14 out R/W Blocking channel 4 output counter
0x6C ch14 in R/W Blocking channel 4 input counter
0x70 ch15 out R/W Blocking channel 5 output counter
0x74 ch15 in R/W Blocking channel 5 input counter
0x78 ch16 out R/W Blocking channel 6 output counter
0x7C ch16 in R/W Blocking channel 6 input counter

9

10 Folder Structure

10 Folder Structure

The folder structure used within the PTS firmware is presented below

→ ip cores/

→ Conv-TTL-Blo/hdl/

→ bicolor led ctrl/

→ bicolor led ctrl.vhd

→ bicolor led ctrl pkg.vhd

→ glitch filt/

→ rtl/

→ glitch filt.vhd

→ pts/

→ rtl/

→ clk info wb slave.vhd

→ incr counter.vhd

→ pts regs.vhd

→ pulse cnt wb.vhd

→ top/

→ conv ttl blo v2.vhd

→ conv ttl blo v2.ucf

→ ctb pulse gen/

→ rtl/

→ ctb pulse gen.vhd

→ ctb pulse gen gp/

→ rtl/

→ ctb pulse gen gp.vhd

→ reset gen/

→ rtl/

→ reset gen.vhd

→ vme64x i2c/

→ rtl/

→ i2c slave.vhd

→ vme64x i2c.vhd

10

10 Folder Structure

The ip cores folder contains repository files that the firmware uses, such
as the OpenCores SPI (see 6)and one-wire masters (see 5). The modules
that have been developed as part of the Conv-TTL-Blo project and can be
used in both PTS and other firmware are present in their own folders as
sub-nodes of the conv-ttl-blo/hdl/ folder. In general, the module files are
present under an rtl/ sub-folder. The pts/ folder is the main folder in the
case of the PTS suite, as can be seen from the fact that it is bolded in the
folder structure above. It contains top-level files in the top/ folder (HDL
and UCF file for pin definitions) and other PTS-specific modules in the rtl/
folder. The ctb pulse gen gp module implements the general-purpose fixed-
width, fixed-frequency-and-delay pulse generator used to generate pulses on
CH10 in the TTL pulse repetition test and the pulses on the blocking output
channels for the blocking pulse test. The ctb pulse gen module is the module
used to generate fixed-width pulses when a trigger is received; it is the same
pulse generator used in the release version of the firmware.

11

11 Getting Around the Code

11 Getting Around the Code

All of the PTS-specific firmware can be found in the conv-ttl-blo/hdl/pts/
folder. The top-level file, conv-ttl-blo.vhd, is the main-part of the firmware
and thus shall be the topic of this short section, where its structure and
guidelines for making changes are given. Most of the top-level ports of the
file have been named according to the schematic file netlist names. The
exceptions from this are due to either net names that could not be syntac-
tically represented in VHDL, or net names that have been made clearer in
VHDL code. Input ports are assigned to architecture signals and signals are
assigned to output ports in each code section, as appropriate. Ports and
signals usually follow the coding guidelines at [5].

architecture behav of conv_ttl_blo_v2 is

Type declarations

Constant declarations

Component declarations

Signal declarations

begin

Figure 3: Declarative part of VHDL architecture

The top module architecture is divided into sections, delimited by visible
comments. For example, code pertaining to a certain test, code pertaining
to more than one test, or general top-level code can go into a code section.
The declarative part of the architecture is organized as shown in Fig. 3.
Types are declared right after the architecture declaration, followed by con-
stant declarations, followed by component declarations, after which the var-
ious signals are declared.

The body of the architecture is organised as showin in Fig. 4. It begins
by instantiating a differential buffer for the 125 MHz system clock and in-
stantiating the reset gen component. Then, the vme64x i2c bridge module
is instantiated along with the Wishbone crossbar that offers access to the
rest of the Wishbone modules in the design. Next, the general-purpose PTS
register (see Sec. 4) module is instantiated, followed by logic necessary for
each of the tests comprising PTS.

12

References

end

125 MHz clock, reset

I2C bridge and crossbar

PTS general-purpose registers
instantiation

Thermometer test logic

begin

TTL and blocking pulse generation
test logic

PLL and DAC test logic

SFP EEPROM and SFP test logic

LEDs test logic

Figure 4: Body of VHDL architecture

References

[1] T.-A. Stana, “CONV-TTL-BLO User Guide.” http://www.ohwr.org/

documents/263, 06 2013.

[2] I. Jeras, “sockit owm, 1-wire (onewire) master,” 2011. http:

//opencores.org/websvn,filedetails?repname=sockit_owm&path=

%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf.

[3] S. Srot, “SPI Master Core Specification,” 2004. http:

//opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%

2Ftrunk%2Fdoc%2Fspi.pdf.

[4] R. Herveille, “I2C Master Core Specification,” 2003. http:

//opencores.org/websvn,filedetails?repname=i2c&path=%2Fi2c%

2Ftrunk%2Fdoc%2Fi2c_specs.pdf.

[5] P. Loschmidt, N. Simanić, C. Prados, P. Alvarez, and J. Serrano, “Guide-
lines for VHDL Coding,” 04 2011. http://www.ohwr.org/documents/

24.

13

http://www.ohwr.org/documents/263
http://www.ohwr.org/documents/263
http://opencores.org/websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf
http://opencores.org/websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf
http://opencores.org/websvn,filedetails?repname=sockit_owm&path=%2Fsockit_owm%2Ftrunk%2Fdoc%2Fsockit_owr.pdf
http://opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://opencores.org/websvn,filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf
http://opencores.org/websvn,filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf
http://opencores.org/websvn,filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf
http://www.ohwr.org/documents/24
http://www.ohwr.org/documents/24

	Introduction
	PTS system
	Memory map
	PTS General-Purpose Registers
	One-Wire Master
	SPI Master
	Clock Information Counters
	I2C Master
	Pulse Counters
	Folder Structure
	Getting Around the Code

