
CONV-TTL-BLO User Guide

October 30, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

19-06-2013 1.00 First version
21-06-2013 1.01 Added termination resistors to Fig. 3, 4
22-07-2013 1.02 New title page and page layout
26-07-2013 1.03 Added additional documentation subsection
05-08-2013 1.04 Memory map is now appendix
29-10-2013 1.05 Added remote reprogramming support

Contents

Contents

1 Introduction 1

2 Front and rear panels 3
2.1 Front panel . 3

2.1.1 System status LEDs 3
2.1.2 SFP connector . 3
2.1.3 TTL inputs and outputs 3
2.1.4 General-purpose inverters 6

2.2 Rear panel . 6

3 On-board switches 8

4 Pulse replication 9
4.1 Pulse signal definition . 9
4.2 TTL vs. TTL-BAR . 10
4.3 Pulse replication mechanism 11
4.4 Pulse jitter and delay . 12

5 Communicating with the CONV-TTL-BLO 14

6 Remote reprogramming support 16
6.1 MultiBoot basics . 16
6.2 Workflow . 17
6.3 Flash memory map . 18
6.4 The multiboot.py script . 18
6.5 Important note regarding remote reprogramming 19
6.6 Firmware status on reception 19

Appendices 20

A Getting started with the CONV-TTL-BLO 20

B Typical use cases 21
B.1 Repeating one blocking pulse to twelve separate ones 21
B.2 Repeating TTL pulses in TTL-BAR 21

C Memory map 22
C.1 Control and status registers 22

C.1.1 Board ID register . 22
C.1.2 Status register . 22

C.2 MultiBoot module . 23
C.2.1 CR – Control Register 24
C.2.2 IMGR – Image Register 24

i

Contents

C.2.3 GBBAR – Golden Bitstream Base Address Register . 25
C.2.4 MBBAR – MultiBoot Bitstream Base Address Register 25
C.2.5 FAR – Flash Access Register 26

ii

List of Tables

List of Figures

1 Simplified block diagram of the pulse conversion system . . . 2
2 CONV-TTL-BLO panel (front panel) 4
3 Pulse repetition on front channel 5
4 TTL general-purpose inverter channel 6
5 CONV-TTL-BLO-RTM panel (rear panel) 7
6 Switches on the CONV-TTL-BLO board 8
7 Pulse signal characteristics . 9
8 TTL and TTL-BAR signals 10
9 TTL/TTL-BAR selection switch 11
10 Pulse repetition mechanism 11
11 Glitch filter enable switch . 12
12 Output pulse delay and jitter 13
13 MultiBoot concept . 16
14 Setup for converting one blocking signal into 16 separate ones 21
15 Setup for repeating TTL pulses in TTL-BAR 21

List of Tables

1 System status LEDs on the CONV-TTL-BLO front panel . . 5
2 Switches on CONV-TTL-BLO 8
3 TTL and TTL-BAR pulse characteristics 9
4 Blocking pulse characteristics 10
5 Output pulse delay and jitter 13
6 The readreg and writereg commands 14
7 MultiBoot workflow . 17
8 Flash memory map . 18
9 Scripts needed for remote reprogramming 18
10 CONV-TTL-BLO memory map 22

List of Abbreviations

FPGA Field-Programmable Gate Array
I2C Inter-Integrated Circuit
PG Pulse Generator
RTM Rear Transition Module
SFP Small Form-factor Pluggable (connector)
VME VERSAmodule Eurocard

iii

1 Introduction

1 Introduction

CONV-TTL-BLO is an open hardware design [1] intended for replicating
TTL and blocking pulses. The main features of the board are:

• VME64x form-factor

• Six independent pulse replication channels, each channel capable of
replicating

– TTL to blocking

– TTL-BAR to blocking

– Blocking to TTL

– Blocking to TTL-BAR

– Blocking to blocking

– TTL to TTL

– TTL-BAR to TTL-BAR

• Four general-purpose inverter channels

• Each channel has 50 Ω input termination

• Each channel capable of driving 50 Ω load

• SFP connector for White Rabbit [2]

• Remote monitoring and reprogramming over I2C lines on VME P1
connector

• Status LEDs

• Pulse LEDs for each replication channel

CONV-TTL-BLO is a VME64x front-module that can be used stan-
dalone as a TTL or TTL-BAR pulse repeater using the six replication chan-
nels, or as a TTL to TTL-BAR (and viceversa) converter using the four
general-purpose inverter channels.

By combining the CONV-TTL-BLO with the CONV-TTL-RTM rear-
transition module (RTM) in the rear part of the VME crate, a flexible six-
channel pulse conversion system can be obtained. Such a system is shown
in Figure 1. TTL pulses arriving on an input TTL channel are regenerated
in the FPGA and sent on the channel’s TTL output as well as on the three
blocking outputs on the RTM. Similarly, blocking pulses arriving on a block-
ing input channel are regenerated in the FPGA and replicated on both the
TTL and blocking outputs of the channel.

1

1 Introduction

V
M

E P
1

I2C

V
M

E P
2

6x blocking

time tagging monitoring

pulse
generation

remote reprograming

4x TTL inverters

6x TTL

1x SFP
FPGA

I2C

level conversion

S
F
P

T
T
L

G
P

IO

B
L
O

CONV-TTL-BLO
front module

CONV-TTL-RTM
rear-transition module

galvanic
isolation

1x input

3x output

Flash PROM

Figure 1: Simplified block diagram of the pulse conversion system

CONV-TTL-BLO contains all active circuitry in a pulse conversion sys-
tem. It handles pulse generation and conversion from/to blocking, as well as
galvanic isolation of blocking outputs. CONV-TTL-RTM is a passive mod-
ule used as an interface from the rear part of the VME crate to the front
module.

Additional documentation

• CONV-TTL-BLO Hardware Guide [3]

• CONV-TTL-BLO HDL Guide [4]

2

2 Front and rear panels

2 Front and rear panels

Two panels exist in the context of the pulse repeater boards. The first
of these is the front panel, which corresponds to CONV-TTL-BLO boards
contains various connectors for TTL-level pulses and White Rabbit, as well
as various status LEDs. The second is the rear panel, located on the other
side of the VME backplane and corresponding to CONV-TTL-RTM boards.
The rear panel offers blocking pulse connectors and status LEDs for pulse
replication confirmation.

2.1 Front panel

The front panel of CONV-TTL-BLO boards is shown in Figure 2. It consists
of status LEDs and several ports; these are, from top to bottom:

• System status LEDs

• Small form-factor pluggable (SFP) connector

• TTL pulse connectors and associated pulse LEDs

• General-purpose inverter channels

2.1.1 System status LEDs

There are twelve bicolor status LEDs on the CONV-TTL-BLO front panel.
The implemented status LEDs are presented in Table 1. Unimplemented
system status LEDs are off.

2.1.2 SFP connector

This connector is used to add White Rabbit support to the CONV-TTL-
BLO boards. If an optic fibre cable is connected to this socket, White Rabbit
precise time-stamping can be added to CONV-TTL-BLO. Four status LEDs
above the connector are provide to show the status of the White Rabbit link.

White Rabbit is currently not supported by the FPGA firmware.

2.1.3 TTL inputs and outputs

Six of the LEMO 00 connectors on the CONV-TTL-BLO board are TTL
repeater channels. Both front-panel inputs and outputs are TTL-level. The
signal type and the inputs and outputs can be either TTL or TTL-BAR, as
selected by the TTL switch (SW2.4, see Section 4.2).

A simplified diagram of pulse repetition is shown in Figure 3, more details
can be found in Section 4.3. If a TTL (TTL-BAR) pulse arrives on a channel

3

2 Front and rear panels

Inputs
TTL or TTL-BAR

Outputs
TTL or TTL-BAR

Inputs
General-purpose

inverters

Outputs
General-purpose
inverters

Status LEDs

SFP
White Rabbit

Figure 2: CONV-TTL-BLO panel (front panel)

4

2 Front and rear panels

Table 1: System status LEDs on the CONV-TTL-BLO front panel
LED Description

PW Power LED. Lights green when a valid CONV-TTL-BLO
firmware is loaded to the FPGA.

ERR Error LED. Lights red when no RTM board is present,
off if a valid RTM is present.

TTL TTL status LED. Lights green when TTL logic is selected
via the on-board selection switch, off when TTL-BAR
logic is selected.

I2C I2C status LED. Flashes green when an I2C transfer is
taking place. Lights red when a transfer error occurs,
or when the CONV-TTL-BLO register being addressed
does not exist. After a transfer error, the LED will still
flash green on transfer and return to a red color after the
transfer has ended; it can only be turned back off via a
system reset.

input, it is regenerated on the output of the same channel in TTL (TTL-
BAR), as well as the blocking outputs of the same channel on the rear
panel, if a CONV-TTL-RTM board with an attached CONV-TTL-RTM-
BLO is present. Similarly, if a blocking pulse arrives on the back panel, it
is replicated on the TTL output channel.

TTL or TTL-BAR

Blocking side

pulse
generator

Figure 3: Pulse repetition on front channel

Each TTL replication channel has a pulse LED which flashes shortly
whenever a pulse is replicated on the channel.

All TTL input channels are terminated with 50Ω resistors; TTL output
channels are not terminated.

5

2 Front and rear panels

2.1.4 General-purpose inverters

Four general-purpose TTL inverter channels can be found in the lower part
of the front panel. The output of a channel is always an inverted version
of the channel input (Figure 4). No regeneration is performed on the input
signal, nor is it in any way connected to the blocking outputs on the RTM.
The input signal is simply passed through an inverter and presented at the
channel output.

Figure 4: TTL general-purpose inverter channel

All general-purpose inputs are terminated with 50Ω resistors; the outputs
are not terminated.

2.2 Rear panel

The rear panel on CONV-TTL-BLO-RTM boards is shown in Figure 5. It
contains the input and output connectors, as well as pulse status LEDs for
six blocking-level pulse channels. A blocking pulse at the input connector of
a channel is regenerated at the three outputs of the same channel in blocking
level and in TTL level at the output connector of the corresponding TTL
channel on the front panel.

All blocking input channels have internal termination with 50 Ω resis-
tors. Blocking outputs are not terminated. Each output on a channel has a
separate blocking driver capable of driving a 50 Ω load.

When a pulse is repeated on the output connector of a channel, the pulse
status LED flashes briefly.

6

2 Front and rear panels

INPUT
Blocking level

Pulse LED

OUTPUTS
Blocking level

Figure 5: CONV-TTL-BLO-RTM panel (rear panel)

7

3 On-board switches

3 On-board switches

There are eight switches provided on-board the CONV-TTL-BLO, not all
of which are used. Figure 6 shows the switches and highlights the used ones;
the used switches are also listed in Table 2.

Glitch filter
enable

TTL selection

ON

OFF

Figure 6: Switches on the CONV-TTL-BLO board

Table 2: Switches on CONV-TTL-BLO
Switch Description

SW1.1 Glitch filter enable (see Section 4.4)
ON – glitch filter enabled, output jitter present
OFF – glitch filter disabled, no output jitter (default)

SW2.4 TTL/TTL-BAR selection switch (see Section 4.2)
ON – TTL channels receive and generate TTL (default)
OFF – TTL channels receive and generate TTL-BAR

Note that both switches in Table 2 are board-wide switches; selecting
one position or the other yields a selection valid for all six pulse replication
channels.

8

4 Pulse replication

4 Pulse replication

4.1 Pulse signal definition

Three pulse types are defined in the context of CONV-TTL-BLO, depending
on signal amplitude, rise and fall times; pulse widths and frequencies are the
same. TTL and TTL-BAR pulses are input and output on the front panel
of the boards. TTL-BAR is essentially an inverted version of TTL signals
(see Section 4.2). Blocking pulses [5] are differential signals and are input
and output on the rear panel (via a CONV-TTL-RTM).

The various characteristics of the pulse signals are defined in Figure 7
and outlined in Table 3 for TTL and TTL-BAR pulses, and in Table 4 for
blocking pulses.

10%

90% 90%

10%

tr tf

90%

10%

tp

Tmin

VIL, VOL

VIH, VOH

Figure 7: Pulse signal characteristics

Table 3: TTL and TTL-BAR pulse characteristics
Symbol Parameter Min. Typ. Max. Unit

VIH Input pulse high-level amplitude (1)(2) 1 5.5 V
VIL Input pulse low-level amplitude (2) 0.7 1.6 V
VOH Output pulse high-level amplitude 2.4 3.3 5 V
VOL Output pulse low-level amplitude 0 0.7 V
tp,i Input pulse width 50 ns
tp,o Output pulse width 1.2 µs
Tmin Period of pulse signal (3) 4.8 µs
tr Rise time 1 3.2 4.9 ns
tf Fall time 2 4 5.6 ns

Note 1: Pulse amplitude for which a tp,o pulse is replicated at the output.
Note 2: VIH , VIL correspond to the thresholds of input Schmitt triggers.
Note 3: Max. pulse frequency dictated by blocking output max. frequency.

9

4 Pulse replication

Table 4: Blocking pulse characteristics
Symbol Parameter Min. Typ. Max. Unit

VIH Input pulse high-level amplitude (1) 3.8 25 V
VIL Input pulse low-level amplitude -5 V
VOH Output pulse high-level amplitude (2) 23 24 25 V
VOL Output pulse low-level amplitude (2) 0 V
tp,i Input pulse width 50 3900 ns
tp,o Output pulse width 1.2 µs
Tmin Min. period of pulse signal 4.8 µs
tr Rise time 75 140 225 ns
tf Fall time 75 160 225 ns

Note 1: Pulse amplitude for which a tp,o pulse is replicated at the output.
Note 2: Voltage amplitude between the differential signal lines.

4.2 TTL vs. TTL-BAR

The two signal types that may be replicated on the front panel are TTL or
TTL-BAR. As Figure 8 shows, TTL-BAR is an inverted version of TTL.

Selection between these two signal types is done by means of the TTL
selection switch, SW2.4 (Figure 9). When the switch is ON (default), TTL
pulses arriving on the front panel input or blocking pulses arriving on the
rear panel input are replicated to TTL pulses on the front panel. When the
switch is OFF, TTL-BAR pulses arriving on the front panel or blocking
pulses arriving on the rear panel are replicated to TTL-BAR pulses on the
front panel.

TTL

TTL-BAR

Figure 8: TTL and TTL-BAR signals

The TTL selection switch is valid board-wide, i.e., if it is set for TTL
inputs (ON), TTL signals should be input on all TTL channels. Inputting
TTL-BAR signals on a channel while the TTL/TTL-BAR selection switch
is set to TTL is not an intended functionality for the board and is not
encouraged.

10

4 Pulse replication

ON: TTL pulses
 on input and output
 (default)
OFF: TTL-BAR pulses
 on input and output

Figure 9: TTL/TTL-BAR selection switch

4.3 Pulse replication mechanism

Figure 10 shows a diagram of how pulses are replicated on a channel inside
the FPGA. The figure also shows the shape of the different types of pulse
signals after they pass through a part of the circuit. The grey DC signals
are the signals when no wire is plugged into a channel.

Blocking
side

PG

1

0

No sig.
detect

TTL idle
(no sig.)

TTL
pulse
sig.

FPGA

ttlsel

gfen

SW1.1

SW2.4

gfen

ttlsel

1

0

ttlsel

Blo. idle
(no sig.)

Blocking
pulse
sig.

Figure 10: Pulse repetition mechanism

The pulse generator (PG) block in the FPGA generates tp,o wide (Ta-
ble 3) TTL pulses at its output on the rising edge of its input. It therefore
expects TTL pulses at its input. The rest of the logic external to this block
is used to accomodate for TTL-BAR and blocking pulses.

First, the OR gate at the PG input indicates the condition for a pulse
to be regenerated. When a pulse arrives at either of the two inputs, TTL
or TTL-BAR on the front panel, or blocking on the rear panel, a pulse is
generated on the output.

On the blocking side, the voltage level of blocking pulses arriving on
the RTM is adapted to a voltage level suitable for the FPGA by on-board
circuitry external to the FPGA. What ends up in the FPGA is a TTL type

11

4 Pulse replication

pulse, so this may be passed directly to the PG’s input through the OR
gate. The output of the PG block is passed to the FPGA output and to the
three blocking pulse outputs of a channel, where the blocking-level pulse is
generated.

On the TTL side, pulse signals go through a Schmitt trigger inverter
buffer to the FPGA. The termination resistor pulls the input line to ground
when there is no signal, so this gets inverted to Vcc by the Schmitt trigger.
Based on the setting of the TTL switch (see Section 4.2), the multiplexer
assures a TTL signal at the OR gate input.

The no signal detect block at the multiplexer input on the TTL-BAR
side detects the lack of a signal by checking for a continuous high level on the
line. This is important when the TTL selection switch is set to TTL-BAR,
since no signal would mean a DC high-level signal appears at the OR gate
input and this signal would inhibit pulses arriving from the blocking side.

4.4 Pulse jitter and delay

The PG block incorporates a glitch filter that can prevent pulses being
generated as a result of a glitch occurring on input channels. The glitch
filter can be enabled via SW1.1 (Figure 11).

OFF: Glitch filter off,
 non-jittery pulses
 (default)

ON: Glitch filter on,
 jittery pulses

Figure 11: Glitch filter enable switch

Placing SW1.1 in the ON position will enable the glitch filter inside the
PG block. The pulse signal is sampled with a 125 MHz on-board clock and
passed through the glitch filter which rejects any pulses narrower than 40 ns,
but introduces an 8 ns jitter on the leading edge of the output signal. Jitter
appears in the form of pulses being triggered either 8 ns before or 8 ns after
the ideal edge, based on when the input pulse is sampled. This is shown in
Figure 12.

When SW1.1 is in the OFF (default) position, the glitch filter is disabled
and the pulse signal is regenerated at the output without being sampled with
an on-board clock. This yields jitter-free pulses at the output, but a glitch
on the input will lead to a pulse being generated at the output.

The glitch filter internal to the PG block may be enabled when the
environment where the board operates is noisy. A noisy environment may

12

4 Pulse replication

lead to glitches induced on the signal lines and thus unwanted pulses on the
output of the CONV-TTL-BLO. When the environment is not so noisy, or
when the 8 ns jitter is deemed to be an issue, SW1.1 can be left in its default
position.

Figure 12 defines propagation delay from input to output and output
jitter and shows how propagation delay was measured per each signal type.
Table 5 presents the characteristics measured on the CONV-TTL-BLO.

90%

10%

90%

tj

90%

tj

Blocking to TTL-BAR
Inverter channels

90%

tPD

90%

tj

90%

tj

TTL-BAR to TTL-BAR

TTL to TTL
TTL to blocking
Blocking to TTL

Blocking to blocking

tj

90%

10%

10%

tj

10%

90%

TTL-BAR to blocking
Inverter channels

tPD tPD

tPD

Figure 12: Output pulse delay and jitter

Table 5: Output pulse delay and jitter
Symbol Parameter Value Unit

tj Leading edge jitter
Without glitch filter 0 ns
With glitch filter 8 ns

tPD Propagation delay (1)
TTL to TTL 40 ns
TTL to blocking 80 ns
Blocking to TTL 80 ns
TTL-BAR to TTL-BAR 50 ns
TTL-BAR to blocking 90 ns
Blocking to TTL-BAR 90 ns
Blocking to blocking 120 ns
Inverter channel 30 ns

Note 1: If glitch filter is enabled, it adds an extra 56 ns delay to tPD.

13

5 Communicating with the CONV-TTL-BLO

5 Communicating with the CONV-TTL-BLO

It is possible to communicate to the CONV-TTL-BLO remotely via the
VME P1 I2C interface. This section describes how to connect to the VME64x
crate and communicate to the board.

In order to connect to a CONV-TTL-BLO board in an ELMA VME
crate, a higher-level protocol based on I2C is defined [6]. The protocol uses
the serial lines on the VME P1 connector (SERCLK, SERDAT).

By this protocol, 212 (12 address bits) 32-bit registers can be read from
or written to byte by byte. A complete memory map for accessible registers
can be found in Appendix C.

The user accesses the VME crate using Telnet and sends commands
which the ELMA SysMon board translates to I2C transfers to the board.
Three telnet commands (see Table 6) can be used to transfer data to the
board. As their names suggest, readreg reads a board register, whereas
writereg and writemregs write to a board register.

Table 6: The readreg and writereg commands
Command Description

writereg slot addr val Writes the hex value val to hex address addr
of board in slot number slot

writemregs slot addr v1 .. v8 This command is similar to the writereg com-
mand, but it allows writing up to eight dif-
ferent values to the same Wishbone register.
The values are given in hexadecimal format
and are separate by spaces

readreg slot addr Returns the value of register at hex address
addr of board in slot number slot

An example of retrieving the CONV-TTL-BLO ID of a CONV-TTL-
BLO plugged into VME slot 2 of the crate some-crate is given below. Since
the ID can be retrieved from address 0x0 (see Appendix C.1), if the board
is present in slot 2, the command should yield the ASCII string BLO2.

tstana@tstana-unit:~$ telnet some-crate

Trying 137.138.192.90...

Connected to some-crate.cern.ch.

Escape character is ’^]’.

login:user

password:**********

%>readreg 2 0

Read Data: 424C4F32

%>

14

5 Communicating with the CONV-TTL-BLO

First, a telnet connection is made with the crate, after which the readreg
command is issued to read the value of address 0. The value of the register
can be confirmed to be the hex value of the ASCII string BLO2, so the
board is indeed present in the slot.

Another example of running the same command, this time with the
board removed from the crate, is given below. As expected, when the board
is removed, it can no longer acknowledge the I2C access, thus the message:

Connected to some-crate.cern.ch.

Escape character is ’^]’.

login:user

password:**********

%>readreg 2 0

Not Acknoledged!

%>

Finally, to further illustrate how to use the the Telnet command line, an
example of writing the value 0xabcde a register at address 0x1c4 of a board
in VME slot 11 and then reading it back to check for correct write is given
below. Note that this example does not normally yield a similar result if
performed on the CONV-TTL-BLO.

Connected to some-crate.cern.ch.

Escape character is ’^]’.

login:user

password:**********

%>writereg 11 1c4 abcde

Done!

%>readreg 11 1c4

Read Data: 000ABCDE

15

6 Remote reprogramming support

6 Remote reprogramming support

CONV-TTL-BLO offer the capability of being reprogrammed from a remote
PC. The user sends the new FPGA bitstream via VBCP to the CONV-TTL-
BLO. The on-board FPGA implements a remote reprogramming (also called
MultiBoot) module, which handles writing the bitstream to the on-board
flash chip. After the bitstream has been sent to the FPGA, the user issues
an instruction (called the IPROG instruction) to the FPGA. This instructs
the FPGA to delete its configuration logic and reconfigure itself with the
new bitstream from the flash chip. All these steps are performed by the user
by writing to memory-mapped registers on the CONV-TTL-BLO.

6.1 MultiBoot basics

MultiBoot [7] works by uploading multiple bitstreams into the external flash
chip on-board the CONV-TTL-BLO. The concept is shown in Figure 6.1.

Header

Golden
Bitstream

MultiBoot
Bitstream

0x000000

0xFFFFFF

Strike 0..2

Strike 3..5

Strike 6..8

1st Image

2nd Image

3rd Image

Figure 13: MultiBoot concept

When the board is powered-up, the CONV-TTL-BLO FPGA attempts
to load itself from the attached flash chip, starting from address 0. This
is where a small bitstream called the Header bitstream is located. The
Header bitstream instructs the FPGA to configure itself from the MultiBoot
bitstream. If this MultiBoot bitstream fails three times, the logic reverts to

16

6 Remote reprogramming support

a Golden bitstream, which is known to be safe in case an error occurs while
sending the MultiBoot bitstream. If for some reason, the Golden bitstream
is corrupted, it is attempted three times, prior to falling back to the Header
bitstream. While on the Header bitstream, the FPGA configuration logic
attempts to load the MultiBoot and Golden bitstreams three more times,
prior to halting configuration.

A strike count internal to the FPGA configuration logic is used to im-
plement this behavior. Bitstreams are selected based on this strike count as
follows:

• if it is 0..2, the MultiBoot bitstream gets loaded

• if it is 3..5, the Golden bitstream gets loaded

• if it is 6..8, the Header bitstream gets loaded, and MultiBoot and
Golden bitstreams are attempted three more times

• if it is 9, configuration is halted

Note that the strike count can only be reset by power-cycling the CONV-
TTL-BLO. Once a MultiBoot load has failed three times, the Golden bit-
stream will get loaded. This will happen even if a new and correct MultiBoot
bitstream is uploaded to the flash, and the IPROG command is issued.

6.2 Workflow

The workflow for remote reprogramming is shown in Table 7.

Table 7: MultiBoot workflow
Step Action

1 Prepare a Xilinx FPGA bitstream
2 Send the bitstream to the flash by writing to the FAR

register
3 Write the MultiBoot bitstream start address and

flash chip read command op-code into the MBBAR
register

4 Write the Golden bitstream start address and flash
chip read command op-code into the GBBAR register

5 Unlock the IPROG bit in the FPGA by setting
CR.IPROG UNL

6 Issue a reprogramming command to the FPGA by
setting CR.IPROG

7 Check that reprogramming succeeded by checking the
FWVERS field in the SR

17

6 Remote reprogramming support

6.3 Flash memory map

The memory map for the CONV-TTL-BLO 32-Mbit on-board flash chip can
be found in Table 8.

Table 8: Flash memory map
Address Description

0x000000 – 0x000043 Header bitstream
0x000044 – 0x16FFFF Golden bitstream
0x170000 – 0x2dFFFF MultiBoot bitstream
0x2e0000 – 0x3FFFFF User non-volatile memory

Of the available four megabytes of non-volatile memory, three are used
for storing the bitstreams. The remaining one megabyte is available to the
user to store custom application data. The user can access this space via
the FAR register. Note that in order to write data to the flash, a special
sequence of commands should be sent. The flash write sequence is given in
the datasheet of the flash chip [8].

6.4 The multiboot.py script

An example Python script is provided to access the MultiBoot logic on the
CONV-TTL-BLO. The script can be found under the test/multiboot/ folder
in the project repository [9]. The script implements the workflow in Table 7
and can be used either as the means of remotely reprogramming the Flash
chip, or as an example for the users to write their own tools.

Table 9 shows the files in the test/ repository folder needed to run the
script.

Table 9: Scripts needed for remote reprogramming
Script Description

multiboot/multiboot.py Communicates to the MultiBoot module to
send the bitstream and issue the IPROG com-
mand

vbcp/vbcp.py Implements the VBCP class, containing
methods implementing VBCP

vbcp/vbcpexcept.py Contains exceptions thrown by the VBCP
class when the response from the ELMA crate
yields an error

The multiboot.py script communicates to the reprogramming logic on
the FPGA, giving the user access to the following:

• Readout of FPGA configuration register values (see the Configuration
Registers section in [7] and the xil multiboot module documentation)

18

6 Remote reprogramming support

• Writing a bitstream to the M25P32 flash chip

• Sending the IPROG command

The first item in this list is outside the scope of this document. We shall
therefore skip to the second, writing the bitstream to the flash chip.

The multiboot.py script will ask for a bitstream input file. This file is a
simple text file in which each line contains 512 ASCII characters, two for
each of the 256 bytes in a flash page. The input file is generated using the
binary conversion tool from Micron. This tool (called converter1.1.exe) can
be found by first downloading the M25P64 flash memory model:

http://cern.ch/go/xl8m

and navigating to the code/ folder. The tool can be run under Linux using
Wine.

After inputting the name of the bitstream text file, the multiboot.py
script asks whether the IPROG command should be issued after the bit-
stream is written. After that, the addresses of both the MultiBoot and
Golden bitstreams are requested from the user. It is advised to input the
addresses listed in Table 8.

Once the addresses have been input to the multiboot.py script, it will
start the process of writing to the flash and after that is finished, if the
user selected it, the script will issue the IPROG command, triggering the
reprogramming of the flash. Correct reprogramming is checked by checking
the version of the firmware from the SR.

A full bitstream write to the flash chip via VBCP using multiboot.py
will take at least twelve minutes. This interval may increase, depending on
network status and operating system the script is run on.

6.5 Important note regarding remote reprogramming

Users should make sure that the new bitstream they program to the flash
chip includes the remote reprogramming module. Otherwise, once a bit-
stream without this module inside it is loaded into the FPGA, the remote
reprogramming capability of the FPGA is lost, and the user will need to
use JTAG or other means to program the FPGA with a MultiBoot-enabled
design.

6.6 Firmware status on reception

CONV-TTL-BLO boards arrive with the Header and Golden bitstreams,
along with bitstream version 2.01 programmed into the flash.

19

http://cern.ch/go/xl8m

A Getting started with the CONV-TTL-BLO

Appendices

A Getting started with the CONV-TTL-BLO

1. Plug in the CONV-TTL-RTM board into the rear part of the VME
crate.

2. Remove the CONV-TTL-BLO board from its box and ESD-protective
bag.

3. Based on the type of pulses desired on the front panel, set the TTL
selection switch (SW2.4, see Section 4.2) to the appropriate position:

• TTL pulses – set the switch to the ON position (default)

• TTL-BAR pulses – set the switch to the OFF position

4. Set the glitch filter enable switch (SW1.1, see Section 4.4) to the ap-
propriate position:

• Glitch filter disabled, jitter-free signal at output – set the switch
to the OFF position (default)

• Glitch filter enabled, introduces output jitter – set the switch to
the ON position

5. Insert the CONV-TTL-BLO board into the VME crate and power on
the crate.

6. Check that the PW status LED is lit green . If there is no RTM in
the rear side of the crate, the ERR LED will light red . The TTL
status LED should also be lit green if you set the TTL switch to the
ON position in step 3.

7. Input a TTL (or TTL-BAR) signal into a front panel input channel.
When a pulse arrives on the input, it is replicated on the output of the
same channel. If an RTM board is present in the rear part of the VME
crate, the pulse will also be replicated on the three blocking outputs
of the same channel on the rear-panel. The channel pulse LEDs on
both the front and rear panels flash briefly when a pulse arrives.

8. Input a blocking signal on a rear panel channel; the pulse LED of the
channel will flash and the pulse will be replicated on the three blocking
outputs of the same channel, as well as the TTL channel output on
the front panel. If the TTL switch is OFF, the pulse is replicated in
TTL-BAR.

20

B Typical use cases

B Typical use cases

B.1 Repeating one blocking pulse to twelve separate ones

Such a setup is outlined in Figure 14. Only one external blocking signal is
required and it is input to CH1 on the rear panel. A daisy-chain is created
on the front panel starting from CH1 to CH2, up to CH4. The front panel
is preferred here due to smaller delay in replicating pulses (see Section 4.4).

Blocking pulses arriving on CH1 then get replicated through the daisy
chain from CH1 to CH4. By connecting all outputs of channels 1 through 4
on the rear panel, the desired pulse conversion system can be obtained.

Each channel will add a 40 ns delay (96 ns with glitch filter), in addition
to the 160 ns (272 ns with glitch filters) of the CH1 and CH4 blocking
conversions.

Used blocking outputs

External
blocking
input

Figure 14: Setup for converting one blocking signal into 16 separate ones

B.2 Repeating TTL pulses in TTL-BAR

When the board has already been plugged in and the switch has been set
in the OFF position, only TTL-BAR pulses can be input on a front panel
replication channel. If the user desires to input a TTL pulse and repeat
it into TTL-BAR, one of the four general-purpose inverter channels can be
used. Figure 15 shows a setup for inverting TTL pulses into TTL-BAR on
inverting channel A and repeating them on front panel channel 6.

The inverter channel will add a 30 ns delay to the input TTL signal.

CH1-5 already connected,
generating TTL-BAR pulses

External
TTL pulse

Figure 15: Setup for repeating TTL pulses in TTL-BAR

21

C Memory map

C Memory map

Table 10 shows the complete memory map of the firmware. The following
sections list the memory map of each peripheral.

Table 10: CONV-TTL-BLO memory map
Periph. Address Description

Base End

CSR 0x000 0x0f Control and status register
MultiBoot 0x040 0x5f MultiBoot module

C.1 Control and status registers

Base address: 0x000

Offset Name Description
0x0 BID Board ID register
0x4 SR Status register
0x8 Reserved Read undefined; write as 0
0xc Reserved Read undefined; write as 0

C.1.1 Board ID register

Bits Field Access Default Description
31..0 ID R/O 0x424c4f32 Board ID

Field Description
ID Board ID (ASCII string BLO2)

C.1.2 Status register

Bits Field Access Default Description
15..0 FWVERS R/O X Firmware version
23..16 SWITCHES R/O X Switch status
29..24 RTM R/O X RTM detection lines
31..30 Reserved R/O X

22

C Memory map

Field Description
FWVERS Firmware version

– leftmost byte hex value is major release decimal value
– rightmost byte hex value is minor release decimal value
e.g.
0x0101 – v1.01
0x0107 – v1.07
0x0274 – v2.74
etc.

SWITCHES Current switch status
bit 0 – SW1.1
bit 1 – SW1.2
...
bit 7 – SW2.4
1 – switch is OFF
0 – switch is ON

RTM RTM detection lines status
0 – line active
1 – line inactive

Reserved Write as ’0’; read undefined

C.2 MultiBoot module

Base address: 0x040

Offset Name Description
0x00 CR Control Register
0x04 SR Status register
0x08 GBBAR Golden Bitstream Base Address Register
0x0c MBBAR Multiboot Bitstream Base Address Register
0x10 FAR Flash access register
0x14 Reserved Read undefined; write as 0
0x18 Reserved Read undefined; write as 0
0x1c Reserved Read undefined; write as 0

23

C Memory map

C.2.1 CR – Control Register

Bits Field Access Default Description
31..18 Reserved – X
17 IPROG R/W 0 IPROG bit
16 IPROG UNL R/W 0 IPROG unlock bit
15..7 Reserved – X
6 RDCFGREG R/W 0 Read config register
5..0 CFGREGADR R/W 0 Config register address

Field Description
Reserved Write as ’0’; read undefined
IPROG When 1, it triggers the FSM to send the IPROG com-

mand to the ICAP controller
This bit needs to be unlocked by setting the
IPROG UNL bit in a previous cycle

IPROG UNL Unlock bit for the IPROG command. This bit needs
to be set to 1 prior to writing the IPROG bit

RDCFGREG Initiate a read from the FPGA configuration register
at address CFGREGADR
This bit is automatically cleared by hardware

CFGREGADR The address of the FPGA configuration register to
read (see Configuration Registers section in [7])

C.2.2 IMGR – Image Register

Bits Field Access Default Description
31..17 Reserved – X
16 VALID R/O 0 Image register is valid
15..0 CFGREGIMG R/O 0 Config. register image

Field Description
Reserved Write as ’0’; read undefined
VALID A read has been performed from the FPGA configu-

ration register at address CR.CFGREGADR, and its
value is present in CFGREGIMG

CFGREGIMG Contains the value of the FPGA configuration regis-
ter; validated by the VALID bit (see Configuration
Registers section in [7])

24

C Memory map

C.2.3 GBBAR – Golden Bitstream Base Address Register

Bits Field Access Default Description
31..24 OPCODE R/W 0 Flash chip read op-code
23..0 GBA R/W 0 Golden Bitstream Address

Field Description
OPCODE Op-code for the flash chip read (or fast-read) com-

mand. Get this value from the flash chip datasheet
GBA Start address of the Golden bitstream on the flash

chip

C.2.4 MBBAR – MultiBoot Bitstream Base Address Register

Bits Field Access Default Description
31..24 OPCODE R/W 0 Flash chip read op-code
23..0 MBA R/W 0 MultiBoot Bitstream Address

Field Description
OPCODE Op-code for the flash chip read (or fast-read) com-

mand. Get this value from the flash chip datasheet
MBA Start address of the MultiBoot bitstream on the flash

chip

25

C Memory map

C.2.5 FAR – Flash Access Register

Bits Field Access Default Description
31..29 Reserved – 0 Flash chip read op-code
28 READY R 1 SPI access status
27 CS R/W 0 SPI chip select
26 XFER R/W 0 Start SPI transfer
25..24 NBYTES R/W 0 Number of bytes to send
23..16 DATA[2] R/W 0 Data at offset 2
15..8 DATA[1] R/W 0 Data at offset 1
7..0 DATA[0] R/W 0 Data at offset 0

Field Description
Reserved Write as ’0’; read undefined
READY SPI transfer ready; NBYTES have been sent to the

flash chip, and NBYTES read from the chip present
in DATA fields

CS SPI chip select. Note that this pin has opposite po-
larity than the normal SPI chip select pin:
’1’ – flash chip is selected (CS pin = 0)
’0’ – flash chip is not selected (CS pin = 1)

XFER ’1’ – starts SPI transfer
This bit is automatically cleared by hardware

NBYTES Number of DATA fields to send in one transfer
0 – send 1 byte (DATA[0])
1 – send 2 bytes (DATA[0], DATA[1])
2 – send 3 bytes (DATA[0], DATA[1], DATA[2])
3 – Reserved

DATA[2] Write this register with the value of data byte 2
After an SPI transfer, this register contains the value
of data byte 2 read from the flash

DATA[1] Write this register with the value of data byte 1
After an SPI transfer, this register contains the value
of data byte 1 read from the flash

DATA[0] Write this register with the value of data byte 0
After an SPI transfer, this register contains the value
of data byte 0 read from the flash

26

References

References

[1] “Open Hardware Repository.” http://www.ohwr.org/.

[2] “White Rabbit.” http://www.ohwr.org/projects/white-rabbit.

[3] T.-A. Stana, “CONV-TTL-BLO Hardware Guide.” http://www.ohwr.

org/documents/282, 07 2013.

[4] T.-A. Stana, “CONV-TTL-BLO HDL Guide.” http://www.ohwr.org/

attachments/2326/hdlguide-conv-ttl-blo-v1.02.pdf, 07 2013.

[5] C. G. Soriano, “Standard Blocking Output Signal Definition for CT-
DAH board,” Sept. 2011. http://www.ohwr.org/documents/109.

[6] ELMA, “Access to board data using SNMP and I2C.”
http://www.ohwr.org/attachments/download/2324/ELMA_SNMP_

specification.pdf.

[7] Xilinx, “UG380 - Spartan-6 Configuration Guide.” http://www.

xilinx.com/support/documentation/user_guides/ug380.pdf, Jan.
2013. v2.5.

[8] “M25P32 32Mb 3V NOR Serial Flash Embedded Memory.” http://

cern.ch/go/vSq8.

[9] “Conv TTL Blocking Repository on OHWR.” http://www.ohwr.org/

projects/conv-ttl-blo/repository.

[10] “CONV-TTL-BLO Schematics.” https://edms.cern.ch/file/

1278535/1/EDA-02446-V2-1_sch.pdf.

27

http://www.ohwr.org/
http://www.ohwr.org/projects/white-rabbit
http://www.ohwr.org/documents/282
http://www.ohwr.org/documents/282
http://www.ohwr.org/attachments/2326/hdlguide-conv-ttl-blo-v1.02.pdf
http://www.ohwr.org/attachments/2326/hdlguide-conv-ttl-blo-v1.02.pdf
http://www.ohwr.org/documents/109
http://www.ohwr.org/attachments/download/2324/ELMA_SNMP_specification.pdf
http://www.ohwr.org/attachments/download/2324/ELMA_SNMP_specification.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://cern.ch/go/vSq8
http://cern.ch/go/vSq8
http://www.ohwr.org/projects/conv-ttl-blo/repository
http://www.ohwr.org/projects/conv-ttl-blo/repository
https://edms.cern.ch/file/1278535/1/EDA-02446-V2-1_sch.pdf
https://edms.cern.ch/file/1278535/1/EDA-02446-V2-1_sch.pdf

	Introduction
	Front and rear panels
	Front panel
	System status LEDs
	SFP connector
	TTL inputs and outputs
	General-purpose inverters

	Rear panel

	On-board switches
	Pulse replication
	Pulse signal definition
	TTL vs. TTL-BAR
	Pulse replication mechanism
	Pulse jitter and delay

	Communicating with the CONV-TTL-BLO
	Remote reprogramming support
	MultiBoot basics
	Workflow
	Flash memory map
	The multiboot.py script
	Important note regarding remote reprogramming
	Firmware status on reception

	Appendices
	Getting started with the CONV-TTL-BLO
	Typical use cases
	Repeating one blocking pulse to twelve separate ones
	Repeating TTL pulses in TTL-BAR

	Memory map
	Control and status registers
	Board ID register
	Status register

	MultiBoot module
	CR – Control Register
	IMGR – Image Register
	GBBAR – Golden Bitstream Base Address Register
	MBBAR – MultiBoot Bitstream Base Address Register
	FAR – Flash Access Register

