Document: DI/OT System Board

Project/Equipment: DI/OT System Board

WR clocks

WR_DAC

SCLK\ D\ VCC\ SYSEX\ SYSEX

WR_DAC

SCLK\ D\ VCC\ SYSEX\ SYSEX

GND

OUT 4
GND
GND
VCC
VCO
9

2Y
6

GND
3

VREF
2

VCC_PLL1
18
GND

TRIM
5

Digilock 23MHz-2.5%/+/-5

OS1
OD2
PR1
OS1:0 = 01 => output type is LVDS, OSC_OUT=off
OD2:0=011, output divider = 4
PR1:0 = 11, prescaler divider =4, feedback divider = 20

<OSI lead to GND to set the output voltage standard to LVDS. Digilock is supported only for SR boards. This choice is available for this FPGA.>

AD5662BRMZ-1

DIN7
SYNC5
VDD1
DIN7
SCLK6
SYNC5

P3V3_CLK

REF5030AID
GND4
TEMP3
NC1
IC12

C78
240
C76
100nF

PLLDAC_OUT1
PLLDAC_OUT2

AD5662BRMZ-1

VIN1

OSC3

VM53S3-25.000-2.5/-30+75

SN74LVT125D

IC20

VCC14

4A12
2A5
1A2
4OE13

25MHz

R235
R234
30
1%

R251
1%

R56
R55

NC 8
REGCAP217
REGCAP119

VCCPLL2 16
GND122

C355
1%

OS110
OD013
PR025
RSTN12
CE7

L19

C364
4.7uF

GND

GND

VFB 3

P3V0_REF

NC 4

C434
1%

VC1

+Vs4

OS1:0 = 01 => output type is LVDS, OSC_OUT=off
OD2:0=011, output divider = 4
PR1:0 = 11, prescaler divider =4, feedback divider = 20

LVPECL is supported only for HR banks

<Please note that this documentation describes Open Hardware and is licensed under the CERN-OHL v2.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL v2 (https://cern.ch/cern-ohl).

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please use the CERN-OHL v2 for applicable conditions.

Source location: (https://www.cern.ch/di/ot-sb-eda)>

As per CERN-OHL v2 section 4, you should not modify the documentation in any way. You must maintain the source location visible on the documentation of any output board or other product you make using this documentation.>
Si5341 is not sensitive to power sequencing. We use P1V8_AUX to also supply the FPGA_CLK_OUT. Otherwise, we would be very close to the 4A limit for 1.8V rail which won't work with correct speed. Must be 50 MHz, otherwise USB UART and some other interfaces won't work with correct speed.

We use P1V8_AUX to also supply the 3.3V for clock distribution circuit. 4-pole LC filter supplies clean 1.8V for clock distribution circuit.
is 600 to 1000ps, Si53340 is 650 to 1050ps IC1 and IC4 have well matched delays. Si53312 IC4 to avoid stubs.

Route Main_DCXO_C_P first to IC1 and then to Helper_DCXO_SDA

Helper_DCXO_SCL

Main_DCXO_SCL

CDR_PLL_CTRL

Main_DCXO_OE

Helper_DCXO_OE

1.10.2019
The document describes Open Hardware and is licensed under the CERN-OHL-S v2. This license permits you to make use of the content for any purpose, distribute and modify the design as you see fit, and to incorporate it into a commercial product. The design was developed as part of the DI/OIOT project, which is a collaboration between researchers and engineers working on innovative technologies. The project focuses on developing open-source hardware solutions for various applications, including but not limited to, scientific research, education, and industry. The design is intended to be used as a starting point for further development and customization by the users. For more information, visit the project's repository on GitHub: https://github.com/diot-system-board. The design is made available for non-commercial use in accordance with the CERN-OHL-S v2 license.
* DQ bits swapping within a byte lane is allowed if write CRC is not used.

According to VU11147:
* DQ bus line swapping is allowed. A byte lane includes any signals associated with the aliased 4-bits of DQ, such as DQ, DQS, DQS_N, and DI signals.

As per CERN-OHL-S v2 section 4, should You produce hardware based on these drawings, You must maintain the Source Location visible on the schematics or top copper for a DI/OT System Board PCB or other product You make using this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

Copyright CERN 2019-2020.

This document describes Open Hardware and is licensed under the CERN-OHL-S v2.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2/licenses/licenses-v2.txt.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

Source Location: https://www.cern.ch/project/ot-sb
Crate power cycle timer

These把控地址及信号必须在

DIOT crate.

This is a startup clock
before main Si5341 is
programmed.

As per CERN-OHL-S v2 section 4, should You produce hardware based
these sources, You must maintain the Source Location visible on the
folder or top copper for a DIOT System Board PCB or other product
with this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

You make using this documentation.

you make using this documentation.

As per CERN-OHL-S v2 section 4, should You produce hardware based
these sources, You must maintain the Source Location visible on the
folder or top copper for a DIOT System Board PCB or other product
with this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

You make using this documentation.

you make using this documentation.

As per CERN-OHL-S v2 section 4, should You produce hardware based
these sources, You must maintain the Source Location visible on the
folder or top copper for a DIOT System Board PCB or other product
with this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

You make using this documentation.

you make using this documentation.

As per CERN-OHL-S v2 section 4, should You produce hardware based
these sources, You must maintain the Source Location visible on the
folder or top copper for a DIOT System Board PCB or other product
with this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

You make using this documentation.

you make using this documentation.

As per CERN-OHL-S v2 section 4, should You produce hardware based
these sources, You must maintain the Source Location visible on the
folder or top copper for a DIOT System Board PCB or other product
with this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
This document describes Open Hardware and is licensed under the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

For more information, you can make use of this documentation.

As per CERN-OHL-S v2 section 4, should you produce hardware based on these sources, you must maintain the Source Location visible on the bill of materials, schematic, or top view. You must maintain the Source Location visible on the bill of materials, schematic, or top view.

As per CERN-OHL-S v2 section 4, should you produce hardware based on these sources, you must maintain the Source Location visible on the bill of materials, schematic, or top view. You must maintain the Source Location visible on the bill of materials, schematic, or top view.

This document describes Open Hardware and is licensed under the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

For more information, you can make use of this documentation.

As per CERN-OHL-S v2 section 4, should you produce hardware based on these sources, you must maintain the Source Location visible on the bill of materials, schematic, or top view. You must maintain the Source Location visible on the bill of materials, schematic, or top view.

As per CERN-OHL-S v2 section 4, should you produce hardware based on these sources, you must maintain the Source Location visible on the bill of materials, schematic, or top view. You must maintain the Source Location visible on the bill of materials, schematic, or top view.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
The diagram shows the pin assignments for the FPGA Bank 63 of the DI/OT System Board. It includes various signals such as DQS_P, DQS_N, DQ[0..15], ACT_N, CAS_N, RAS_N, CS_N, DQ[0..15], DQS_P[0..1], BA[0..1], CK_N, CK_P, ODT, CR, and others. The AC-biased clock input option is denoted as DQS_BIAS = TRUE. Exceptions for PMD and RST_N signals are noted. The pin assignment differs only on the exception of PMD and RST_N signals, which is connected instead to the FPGA.
Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15

Copyright CERN 2019-2020.
This document describes Open Hardware and is licensed under the
CERN-OHL-S v2.
You may redistribute and modify this documentation and make products
using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR
PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.
Source location: https://www.ohwr.org/project/diot-sb-zu
As per CERN-OHL-S v2 section 4, should You produce hardware based
on these sources, You must maintain the Source Location visible on the
silkscreen or top copper for a DI/OT System Board PCB or other product
you make using this documentation.

SLOTx.LVDS0 is clock capable and must be in same bank as SLOTx.LVDS1...7
SLOTx.LVDS8 is clock capable and must be in same bank as SLOTx.LVDS9...15
This document describes Open Hardware and is licensed under the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

Copyright CERN 2019-2020.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

Please see the CERN-OHL-S v2 for applicable conditions.

You make using this documentation.

Silkscreen or top copper for a DI/OT System Board PCB or other product.
Recommended capacitance given in UG583. Check pin 3.

As per CERN-OHL-S v2 section 4, should You produce hardware based on these sources, You must maintain the Source Location visible on the silkscreen or top copper for a DI/OT System Board PCB or other product you make using this documentation.

As per CERN-OHL-S v2 section 4, should You produce hardware based on these sources, You must maintain the Source Location visible on the silkscreen or top copper for a DI/OT System Board PCB or other product you make using this documentation.

Recommended capacitance given in UG583.
European Organization for Nuclear Research

CH-1211 Geneve 23 - Switzerland

DI/OT System Board PCB or other product you make using this documentation.

As per CERN-OHL-S v2 section 4, should You produce hardware based on this circuit, You must maintain the Source Location noted in thedeclaration of top-copper for a DI/OT System Board PCB or other product you make using this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

CERN-OHL-S v2 https:/cern.ch/cern-ohl.
European Organization for Nuclear Research
CH-1211 Genève 23... Group Skew Constraints
max length: 1017 ps
data/dm to DQS: +-10 ps
dqs_p and dqs_n: 2 ps
CK to dqs: -149 to 1796 ps

* Address, Command and Control Skew Constraints
 max length: 1339 ps
 address/command/control to CK: +-8 ps

* Data Group Skew Constraints
 max length: 1017 ps
 differential DQS: =0 ps
 dqs_p and dqs_n: =2 ps
 CK to dqs: -149 to 1796 ps

Silkscreen or top copper for a DI/OT System Board PCB or other product

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 license.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

Source location: https://www.ohwr.org/project/diot-sb-zu

This document describes Open Hardware and is licensed under the CERN-OHL-S v2 license.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 license.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 license for applicable conditions.

Source location: https://www.ohwr.org/project/diot-sb-zu

You make using this documentation.

The project is licensed under CERN-OHL-S v2.
European Organization for Nuclear Research
CH-1211 Genève 23 ...
4.7uF caps in the proximity of the IC which gives them low impedance contact with power plane that supplies the IC

Source location: https://www.ohwr.org/project/diot-sb-zu

Copyright CERN 2019-2020.
Satisfactory quality and fitness for a particular purpose.

Rule 5.49: The differential length mismatch on each differential clock pair shall be 1.2 ps.
Rule 5.43: The differential length mismatch on each differential data pair shall be 1 ps.
Rule 5.22: Clock traces shall provide a differential impedance of 100 Ω for FMCx_CLK0M2C and FMCx_CLK0C2M pairs.
Recommendation 5.3: When signals are routed differentially each pair should provide a differential impedance of 100 Ω.
As per CERN-OHL-S v2 section 4, should you produce hardware based on these circuits, you must maintain the source location visible to the discussion or stop co-opting for a DIOT System Board PCB or other product made using this documentation.

DIOT System Board

CPCIS Connectors P1-P3

Rx/Tx lines are swapped on the backplane

ETH_A - ETH_B, ETH_C - ETH_D lines are swapped on the backplane

P1 connector

P2 connector

P3 connector

I2C MUX
PCA9548APW 1110000 = 0x70

MUX outputs:
MUX
IFPS5404/SMEMRFBE 7-bit I2C address: 0x14; 7-bit PMBUS: 0x44

MUX
LM75 - IC36: 0x48
LM75 - IC39: 0x49
LM75 - IC40: 0x4A

MUX
SFP EEPROM 0x50
SFP DDMII 0x51

Keep the switch in reset state until P3V3 wakes up to prevent from blocking power management I2C bus.
European Organization for Nuclear Research
CH-1211 Geneve 23 - Switzerland

The P5V0_MP (therefore also P3V3_MP) are delivered from DI/OT backplane, thus always available.

For external programming

The supply line is 1.2V, allowing FLASH, FPGA and FPGA. It's 4A worst case.

Route differentially

Please consult UM before routing

https://www.infineon.com/dgdl/Infineon-UG-IRSP5401Demoboard-UM-v01_02-EN.pdf?fileId=5546d4625e37f35a015e37f7da400002

As per CERN-OHL-S v2 section 4, should you produce hardware based on these sources, you must maintain the Source Location visible on the documentation or top coupon for a DJOT System Board PCB or other products made using this documentation.

Copyright CERN 2019-2020.

This document describes Open Hardware and is licensed under the CERN-OHL-S v2.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl) WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl) WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

Source location: https://www.ohwr.org/project/diot-sb-zu
C431 is recommended to be NP0. But 220nF, 25V X7R is good enough.

Power supply: Buck2

C431 is recommended to be NP0. But 220nF, 25V X7R is good enough.

Please consult UM before using https://www.infineon.com/dgdl/Infineon-UG-IRSP5401Demoboard-UM-v01_02-EN.pdf?fileId=5546d4625e37f35a015e37f7da400002

Power sequencing:
P2V5 then MGT_0V9, MGT_1V2

As per CERN-OHL-S v2 section 4, should You produce hardware based on these sources, You must maintain the Source Location visible on the illustration or top copper for a DI/OT System Board PCB or other product in making this documentation.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
power-supply-3.SchDoc

2V5 rail supplies only DDR Vpp so 300mA is enough.