
Play project

1 Introduction

This project is meant as an example of how one can read and write to address-mapped registers
implemented in hardware for a SPEC board. In short, the Simple PCIe FMC Carrier (SPEC)
is an FMC (FPGA Mezzanine Card) carrier card which can be introduced in one of the PCIe
slots in your PC. Using the FPGA on the SPEC, one can control the various peripheral devices
on-board the SPEC, as well as the potential mezzanine card connected to the SPEC. More detailed
information about the SPEC can be found here.

As we can see from the link above, the SPEC card has a Gennum GN4124 PCIe interface on
it; this is a PCIe interface chip that provides a bridge to various FPGA logic, thus giving us the
capability of controlling this logic from a PC.

Let us start by describing the folder structure for the project, followed by a description of the
hardware design. Then, we’ll talk a bit about the software. We will finish by going through a
short example of running the software.

2 Folder structure for the project

The folder structure for our simple project, called play is as shown below:
play/

→ doc/

→ hdl/

→ design/

→ tb/

→ sim/

→ syn/

→ sw/

In summary, here’s what each folder contains:
doc/ The present document
hdl/ HDL files for the design
hdl/design/ HDL modules generally used for

synthesis
hdl/tb/ Testbenches for various design

modules
sim/ Simulation-specific files, such as

simulation scripts, simulator log
files, etc.

syn/ Synthesis-specific files, such as
the main project file for Xilinx
ISE, .ucf files, etc.

sw/ Python scripts for running tests
on the FPGA design

1

http://www.ohwr.org/projects/spec

3 Design description

A simplified block diagram of the design is presented in Fig. 1. It contains a few VHDL modules
communicating via Wishbone buses. The gn4124 core component is used to decode the signals
from the Gennum chip and send them via the Wishbone interface. In this purpose, the Gennum
core has one Wishbone master controlling signals to an address decoder slave (the addr dec com-
ponent). This address decoder acts as a Wishbone master on a separate bus, which has the led ctrl
and irq controller components as slaves.

leds_sm

gn4124_core

W
B

 m
a
ste

r
P
IC

e
 sig

n
a
ls

addr_dec

W
B

 sla
v
e

W
B

 m
a
st

e
r

led_ctrl

W
B

 sla
v
e

irq_controller

W
B

 sla
v
e

Figure 1: Design block diagram

Signals from the user (via the Gennum chip and core) will be decoded by the address decoder
and the appropriate Wishbone slave selected. A very simple address mapping is used throughout
this project, as seen in Tabel 1. By this mapping, a write to address 0x10 sets LED1A on the
SPEC card front panel, and a write to address 0x14 sets LED1B on the front panel on.

Table 1: Address map for the play project
0x00 IRQ MULTI IRQ
0x04 IRQ SRC
0x08 IRQ EN MASK
0x0C reserved
0x10 LED1A
0x14 LED1B

In order to test and play with IRQ’s, an IRQ controller is also included. The controller supports
up to 32 interrupt sources by enabling the appropriate bit in the 32-bit IRQ EN MASK register.
In our project, a write to LED1A triggers interrupt source 0, and a write to LED1B triggers
interrupt source 1. Reading the IRQ SRC register indicates which interrupt source was triggered,
and writing the appropriate bit in the register clears the interrupt source.

Last, the (inappropriately-named) leds sm block is a simple block providing a binary counter
on the two front panel LEDs (LED1A and LED1B) ofx the SPEC board. The binary up-counter
counts roughly once per second, providing information to the user that the bitstream downloaded
to the FPGA works as intended.

As seen in Fig. 1, the output of the leds sm block is multiplexed with the output of the led ctrl

2

block. The multiplexer output is switched and remains connected to the output of the led ctrl
block as soon as the user initiates a command to write to one of the LED registers.

This design is used as a reference design for the hdlmake tool. If you haven’t used hdlmake
before, the tutorial on how to run it using this project can be found here.

4 Software

The sw/python/ folder contains a couple of scripts useful for this project. The bitstream load.py
script is useful for downloading a bitstream (note: this should have a .bin extension) to your
FPGA. The play leds.py script is the topic of this section, and is used to read and write to the
registers listed in Table 1. Both these scripts use methods defined inside classes of the PTS tool.
You can download PTS by cloning its git repository; the following Linux command would do this:

g i t c l one g i t : // ohwr . org /misc/ pts . g i t < f o l d e r o f cho ice>

Note: You will need git to be able to run this command. Follow the instructions here if you don’t
have git installed.

Now let’s take a look at the contents of the sw/python/ folder. You can find a script called
play leds.py ; running this script would ask you if you want to read from or write to the board,
and which register you wish to read/write. As stated in the previous section, writing to a LED
register would cause an interrupt. The following is an example output of running the script and
writing to one of the LED registers:

Mask : 0x3
(w) r i t e /(r) ead /(q) u i t ? r
READ
reg ? 0
value : 0x0
(w) r i t e /(r) ead /(q) u i t ? w
WRITE
reg ? 0
va l ? 1
i n t e r r up t !
s r c : 0x1
wrote to LED 1
value 0x1
(w) r i t e /(r) ead /(q) u i t ? r
READ
reg ? 0
value : 0x1
(w) r i t e /(r) ead /(q) u i t ? w
WRITE
reg ? 4
va l ? 1
i n t e r r up t !
s r c : 0x2
wrote to LED 2
value 0x1
(w) r i t e /(r) ead /(q) u i t ? r
READ
reg ? 4
value : 0x1
(w) r i t e /(r) ead /(q) u i t ? q
qu i t t i n g

Note that the script outputs LED 1 for LED1A and LED 2 for LED1B.
Now let us take a look at what’s inside the script. First of all we create a Gennum object and

enable interrupts with a method inside the Gennum class:

Create a SPEC ob j e c t us ing RawRabbit d r i v e r
spec = r r .Gennum()
spec . i rqena ()

3

http://www.ohwr.org/projects/hdl-make/wiki/Quick-start-new
http://www.ohwr.org/projects/pts
http://www.ohwr.org/projects/ohr-support/wiki/Git_Client_Setup

Then, using the CCSR class in the csr module of PTS, we create a couple of register classes,
using the base addresses of the IRQ controller and respectively LED controller:

Define the r e g i s t e r s ’ base addresses
i r q r e g s = CCSR(spec , 0)
l e d r e g s = CCSR(spec , 16)

Since writing to LED registers LED1A and LED1B create interrupts on sources 0 and respec-
tively 1, writing 0x3 to the IRQ EN MASK register enables these two interrupts:

Enable i n t e r r up t on LED wr i t e
i r q r e g s . wr reg (IRQ EN MASK, 0x3)
msk = i r q r e g s . rd r eg (IRQ EN MASK)

Assuming basic knowledge of Python or object-oriented programming, the rest of the program
should be pretty easy for you to understand. One final thing that should be pointed out is that
you should feed the wr reg method of the CCSR class addresses that are offsets from the base
address. We already saw an example of this in the output of the play leds.py script, where instead
of giving address 16 for LED1A, we gave it address 0, and when we wanted to light LED1B, we
gave it address 4.

Hopefully, you now have a basic understanding of how to access registers using PTS. Many
modules exist for accessing different types of peripherals on the SPEC, you should have downloaded
these when you cloned the git repository. Check them out for more details and ideas. You can
also check out the test/ folder under your PTS clone folder for examples on using PTS.

4

	Introduction
	Folder structure for the project
	Design description
	Software

