
AIDA mini-TLU manual

F. Crescioli1, D. Cussans2, A. Dosil Suárez3

1Laboratoire de physique nucléaire et des hautes énergies, Paris, France

2University of Bristol, Bristol, United Kingdom

3University of Santiago de Compostela, Spain

15th April 2013

The AIDA mini Trigger Logic Unit (AIDA mini-TLU) has been conceived
as a device to replace tens of VME modules and lemo cables dangling around
in every test-beam setup. It permits an easier and remote configuration of
the trigger logic through the Ethernet with added functionalities such as test
readout elements without beam. The generic design of the mini-TLU permits
to connect it to a very wide range of devices, even LHC like readout systems.
This has the benefit of sharing hardware, firmware and DAQ-Software effort.
Also, it implements a 1 ns accuracy TDC.

1 Introduction

The AIDA mini-TLU provides timing and synchronization signals to test-beam readout
hardware. It can either provide or accept a system clock. It accepts the asynchronous
trigger signals from an external source, such as beam-scintillators and generate syn-
chronous signals to send to the devices, triggers or other control signals. It also accepts
busy signals or other veto signals from DUTs. Also, the mini-TLU records a time-stamp
of incoming signals.
The configuration parameters and data are sent and received via the IPbus. IPbus is a
simple way to control and communicate TCA-based hardware via the IPbus protocol.

1



Clocking
Internal 200 MHz oscillator
Socket for a single-ended user oscillator
SMA connectors

Communication 10/100/1000 Tri-Speed Ethernet PHY

Expansion connectors
FMC-LPC connector (68 se. or 34 diff. user defined signals)
8 User I/O (Digilent 2x6 Header)

Display 4X LEDs

Control
4X Push Buttons
4X DIP Switches

Table 1: Key features of the Xilinx Spartan 601 evaluation kit

2 Hardware design

The AIDA mini-TLU consist of a Xilinx Spartan 601 evaluation kit, attached to a
connection card by its FMC-LPC connector. The evaluation kit is a cheap solution for
the mini-TLU. It provides all the features needed with at cheaper cost than a built-in
design. Some of the key features of the sp601 evaluation kit are showed in Table 1.
The second part of the AIDA mini-TLU is the connection card. This card has been
designed specifically for this purpose. The mini-TLU have the next connections plugs,
which are also indicated schematically in Figure 1:

� 4 Trigger input: Lemo single-pole size-00

� Clock I/O: Lemo two-pole size-00

� 1 DUT: RJ45(4 differential signals)

� 2 DUT: HDMI (5 differential signals)

� 1 Ethernet connection (copper or optical)

The device under test signals are connected to the TLU via one RJ45 and two HDMI
connectors. The two connections have the same signals, but only the RJ45 is backward
compatible with the JRA1 Trigger Logic Unit.

2.1 RJ45 connector

The AIDA mini-TLU has one RJ45 connector, compatible with the JRA1 TLU. This
connection provides 4 LVDS signals. A detailed description of the signals is indicated in
Table 2. Pin out at the mini-TLU:

1. DUT CLOCK-

2. DUT CLOCK+

3. BUSY-

2



Figure 1: AIDA mini-TLU connections.

Figure 2: 8P8C (RJ45) connector pin-out

4. CONTROL-

5. CONTROL+

6. BUSY+

7. TRIGGER-

8. TRIGGER+

Connector pins numbering is illustrated in Figure 2.

2.2 HDMI connectors

The AIDA mini-TLU has two HDMI connectors, providing 1 LVTTL and 5 LVDS signals
each, as indicated in 3. The pin out is the following:

1. CLOCK-

2. GND

3. CLOCK+

3



Name Description Signal type

Clock Input/Output: Clock from/to DUT LVDS
Busy Input: Busy signal from DUT LVDS
Control Output: Shutter, spill-on, power-cycling LVDS
Trigger Output: Trigger signal to DUT LVDS

Table 2: RJ45 signal details

Figure 3: Type A receptacle HDMI pin-out

4. CONTROL+

5. GND

6. CONTROL-

7. BUSY+

8. GND

9. BUSY-

10. SPARE+

11. GND

12. SPARE-

13. UNCONNECTED

14. HDMI POWER ENABLE

15. TRIGER+

16. TRIGER-

17. GND

18. UNCONNECTED

19. UNCONNECTED

Connector pins numbering is illustrated in Figure 3.
Each of this cables can control one device and, since the mini-TLU only provides two
HDMI and one RJ45 connectors, we will need a method to spread the signals. We will
use an HDMI fannout. This gadget is a 1:8 fanout, providing three differential pairs
having 1:8 fanout and two differential pair having a 8:1 fan-in. The fanout schematic is
indicated in Figure 4.

4



Name Description Signal type

Clock Output: Clock to DUT LVDS
Busy Input: Busy signal from device LVDS
Control Output: Shutter, spill-on, power-cycling LVDS
Trigger Output: Trigger signal to DUT LVDS
Spare Input: General purpose Input LVDS
HDMI POWER ENABLE Output: HDMI power enable LVTTL

Table 3: HDMI signals details

Figure 4: Fanout to spread the signals from the mini-TLU to many devices.

3 Firmware

The AIDA mini-TLU firmware is composed basically by the next main elements: the
Ethernet communication driver (IPbus), the time to digital converter (TDC), the hand-
shake controller, the controler for discriminator threshold DAC and the controller for
programmable shutter/spill-on/power-cycling signal.

3.1 IPbus

IPbus is a simple way to control and communicate with your Ethernet-attached xTCA
hardware via the IPbus protocol. IPbus is the communication protocol used for the
data interchange between the mini-TLU and the DAQ pc. Its source code is available to
download in [?], it is written in VHDL and it has a small footprint. Data is sent directly

5



Figure 5: TDC global schematic view

to the FPGA and you do not need a microblaze or other CPU. It is not needed any
proprietary hardware, firmware or software to operate it as well. The transport protocol
is UDP and the data is addressable in 32b packets.

3.2 Time to digital converter (TDC)

The TDC is the component in charge of time stamping every interesting signal with an
accuracy of 0.725 ns. To accomplish this precision the TDC uses a 640 MHz input clock as
reference and splits the input, delaying one of the split signals one half cycle. Each branch
goes then to the deserializer module IOSERDES (Input/Output SERializar/DESerializer).
This module generates a 4 bits parallel word with the input data deserialized, then this
data is merged and we obtain an 8 bits parallel word every 1/(160 MHz) ns. The data
obtained is analysed and the system generates a rising or falling signal, depending on the
input. The rising and falling edges are sent then to the event formatter, which generates
the final information word to be sent out. Finally, the data arrives to the event buffer,
where it is saved in a FIFO while it waits to be sent to the DAQ pc. The schematic of
this process can be seen in Figure 5.
The IODELAY module needs to be recalibrated every once in a while. For the moment the
calibration is started externally from IPbus. The finite state machine of the calibration
process is indicated in Figure 6.

3.3 Data Format

The AIDA mini-TLU records the time stamp of input and internally generated signals
with an accuracy better than 1 ns. The time stamp format is different depending on the
signal recorded and the number of input signals configured in the measuring moment.
There are three possible signal types: trigger, internally generated and edge signals. The
internally generated and edge signals have the properties of rising and falling edges. The

6



Figure 6: Finite state machine for the IODELAY calibration

0000 internal trigger
0001 external trigger
0010 shutter falling
0011 shutter rising
0100 edge falling
0101 edge rising
0110 spill off
0111 spill on

Table 4: Event type codification

coding of these names is indicated in Table 4. Data is sent to the DAQ pc in packages
from one to three words of 64 bits.

3.3.1 Trigger data

The AIDA TLU will have 12 dedicated trigger inputs. The mapping for this type of
signal is indicated in Figure 7. The information of this signal is sent in two or three 64
bits word depending on whether any of the 4 to 11 dedicated trigger inputs are enabled.
The AIDA mini-TLU only has four trigger inputs, so it will always send only two 64 bits
words.
The 48 lowest significant bits of the first word indicate the 25 ns time stamp. This time
stamp is synchronized with the 40 MHz main system clock. Bits from 48 to 59 indicate
which of the trigger inputs have been fired and the 4 most significant bits indicate the
event type. In this particular case the possibilities are only internal or external trigger.
The 32 lowest significant bits of the second word indicate the event number. The 32

7



Figure 7: Mapping of the trigger signal information. The third word, marked with a star,
is only sent when at least one of the 4 to 11 dedicated trigger inputs is enabled.

Figure 8: Mapping of the internally generated signals information.

highest significant bits are divided in four words of 8 bits. Each word indicates the 1 ns
accuracy time stamp of the signal received in each dedicated input. Only in the case that
at least one of the 4 to 11 dedicated trigger inputs is enabled, the third word is created
and sent out. This third word contains eight words of eight bits, each indicating the 1 ns
time stamp of the trigger in each input.

3.3.2 Internally generated data

The internally generated signal information includes the event type, an event number
counter and a 25 ns time stamp, as can be seen in Figure 8. In this case only one 64 bits
word. These signals are synchronous with the 40 MHz system clock, therefore only a 25
ns time stamp is needed.
The 48 lowest significant bits indicate the 25 ns time stamp. The next 12 bits are the
event number and the four most significant bits indicate the event type.

3.3.3 Edge data

There are some external signals that can be interesting to record. We call them edge
data because we only want to know their rising or falling edge time stamps. The data
format can be seen in Figure 9. As in the shutter and spill case, only one 64 bits word
is sent. The 48 lowest significant bits indicate the 25 ns time stamp and the 4 highest
significant bits indicate the event type, as in every other signals. Bits from 49 to 55
indicate the 1 ns time stamp and the next 4 bits code which input detected the event.

8



Figure 9: Mapping of the edge signal information.

3.4 Handshake between TLU and DUT

The AIDA TLU provides two different handshake modes. One EUDET handshake,
compatible with the old JRA1 TLU, and a new synchronous mode.

3.4.1 EUDET handshake (Trigger/busy with trigger number)

1. TLU receives trigger from beam scintillators

2. TLU asserts TRIGGER

3. On receipt of TRIGGER going high, the detector asserts BUSY

4. On receipt of BUSY going high, TLU de-asserts TRIGGER and switches the
TRIGGER line to the output of a shift register holding the trigger number/data.

5. The DUT clocks data out of the shift register by toggling TRIGGER CLOCK.
Data changes on the rising edge of TRIGGER CLOCK3 . The least significant bit
of the trigger data is shifted out first. Only the bottom 15-bits of the 32-bit trigger
counter are clocked out. If more than 15 clock pulses are issued on the TRIGGER
CLOCK line the TRIGGER output is set to zero. The DUT should issue 16 clock
pulses which will clock out the bottom 15-bits of the trigger number and return
the TRIGGER line to logical low. This will avoid glitches on the TRIGGER line
when the DUT returns the BUSY line to logical low.

6. After clocking out the trigger number (and the detector being ready to take more
data, the DUT de-asserts BUSY)

7. System is ready for triggers again.

Figure 10: Timing of signals in “EUDET Handshake”

9



3.4.2 Synchronous mode

This mode is new for the AIDA TLU and it is incompatible with old handshake modes.

1. TLU receives trigger from beam scintillators

2. TLU asserts TRIGGER synchronous with its internal clock

3. After one clock cycle the system is ready for triggers again

� If at any time the TLU receives a busy signal from DUT, it will veto all incoming
triggers while the signal is active

tcl

tsl

tvl tvl

Scintillators

Synchronous Trigger

Clock

Busy

Internal State Active Vetoed Active

Figure 11: Timing of signals in “Synchronous mode”

4 Software

The TLU control software is based on two main frameworks: EUDAQ[?] and µHAL[?]
framework.

4.1 µHAL

The µHAL hardware abstraction framework is a component of the wider CACTUS
framework developed for the upgrades of the CMS Level-1 Trigger. It can be compiled
and used separate from the rest of the CACTUS framework.
The µHAL library provides a simple and flexible way to describe the hardware registers
and other memory elements. The hardware is described in XML files and it reflects also
the internal hierarchy of the firmware.
The tree structure described in XML is made accessible with robust C++ classes with
methods for I/O operations. On the other side of the interface the communication
with the hardware is done using the UDP-based IPBus protocol. This abstraction layer
provides an efficient separation between the firmware implementation and the C++ access
to hardware memory elements.

10



Figure 12: EUDAQ Run Controller

4.2 EUDAQ

EUDAQ is a simple and easy to use data aquisition framework, written in C++. It was
originally designed to be used for the EUDET JRA1 beam telescope.
It provides a simple and flexible structure to build a DAQ system.
The framework provides several GUI interfaces. For example the run controller is shown
in figure 12 and the histogram viewer for online monitoring is shown in figure 13.

The other main components of the framework are networked deamons. The “producers”
have the task to communicate with the hardware and produce the data stream. The
“data collector” has the task to receive all data streams from the producers and collect
them in a structured binary file for offline analysis.
The deamons communicate to the run controller and each other via TCP/IP. The run
controller provides commands to coordinate the state transitions of all connected daemons
(ie. to configure or to start a data taking run).

4.2.1 TLU Producer

The EUDAQ component for the mini-TLU is the TLU IPbusProducer.
This producer can access all TLU registers via the abstraction provided by µHAL.

The hierarchy of the various modules within the firmware is reproduced. The top level is
described in table 5. At top level the only accessible register is the firmware version, all
the other memory elements are contained in a subsystem.
The available subsystems are described in tables 6 to 13. The IPBus address of each
memory element can be computed by adding the “leaf address” to the “base address” of

11



Figure 13: EUDAQ Online Monitor

the subsystem. On the C++ TLU Producer software all memory elements are accessed
by the “Node-Id” name.

The TLU Producer software handles the commands from run control and provides high
level configuration to the TLU unit. It also reads the Event Buffer FIFO in the TLU
and send the corresponding stream of data to the EUDAQ data formatter.
All functions of the TLU Producer are available in a standalone command line program
for debugging purposes.

4.3 Configurations

5 Hardware Interfaces

The TLU is normally under the control of the central DAQ software. It can be configured,
controlled and the time-stamp information read-out by the central DAQ.

5.1 CALICE

The signals to/from the CALICE Clock and Control Card (CCC) are as follows:
Clock(5MHz), Trigger , Busy, Master Clock(50MHz). The Trigger and Busy signals are
Manchester(Phase) encoded accordinng to IEEE 802.3 to maintain DC-Balance. Event
matching between Calice and beam-telescope verified by matching timestamps between
TLU and CALICE readout within a combined event.

12



Node-Id Base address Type
FirmwareVersion 0x00000000 register

EMACHostbus 0x00000002 subsystem
DUTInterfaces 0x00000020 subsystem
TriggerInputs 0x00000040 subsystem
TriggerLogic 0x00000060 subsystem
EventBufferc 0x00000080 subsystem

I2C 0x000000c0 subsystem
TriggerGenerator 0x000000e0 subsystem
ShutterGenerator 0x00000100 subsystem

SpillGenerator 0x00000120 subsystem
EventFormatter 0x00000140 subsystem

Table 5: Root level µHAL nodes

Node-Id Leaf address Type
SerdesRst 0x00000000 register

Table 6: Trigger inputs subsystem µHAL nodes

It seems likely that the CALICE CCC system the CALICE Beam Information (BIF)
system and the beam-telescope TLU could be implemented in the same physical hardware.

5.2 TimePix

The LHCb TimePix telescope is being offered as part of AIDA infrastructure and hence
needs to be able to synchronize with a device under test. Currently this is done using
NIM based electronics. If a central clock , a trigger signal and an optional synchronization
signal is distributed then event synchronization between the DUT and the TimePix
telescope can be done either by timestamp matching.
Event matching by comparing timestamps has the advantage that as long as there is no
upset in the timestamp coiunters missing triggers are not an issue.

5.3 LHC

Either use EUDET-Style signal definitions or Calice-style interface (phase encoding is
optional). Depending on requirements.

5.4 Existing EUDAQ Users

Keep compatibility with EUDAQ TLU.[?]

13



Node-Id Leaf address Type
PostVetoTriggers 0x00000000 register
PreVetoTriggers 0x00000001 register

InternalTriggerInterval 0x00000002 register
TriggerMask 0x00000003 register
TriggerVeto 0x00000004 register

ExternalTriggerVeto 0x00000005 register
ResetCounters 0x00000006 register

Table 7: Trigger logic subsystem µHAL nodes

Node-Id Leaf address Type
EventFifoData 0x00000000 register

EventFifoFillLevel 0x00000001 register
EventFifoCSR 0x00000002 register

EventFifoFillLevelFlags 0x00000003 register

Table 8: Event buffer subsystem µHAL nodes

6 Integrating Different Detectors

6.1 CALICE

Integration between CALICE Calorimeter modules and other detectors, for example the
pixel beam telescope is part of the AIDA programme. The purpose is mainly for system
integration tests and proof of concept.
There are various integration options. Integration at the hardware level will be done by
integration of the AIDA TLU with the CALICE CCC. Possibly by making them the
same physical object. For software integration, one possibility[?] is to control CALICE
run control from EUDAQ. Write separate files. Combine offline. Purpose: concept.

6.2 TPC

Integration of XXX , YYYY system almost completed under EUDAQ programme[?] ,
martin-killenberg.

6.3 Triggered Detectors (e.g. ATLAS, CMS Pixels)

As in EUDET. Beam-telescope and DUT synchronized by TLU hardware signals. DUT
data written either via an EUDAQ producer, or by writing telescope and DUT data to
separate files and comdining offline.

14



Node-Id Leaf address Type
LogicClocksCSR 0x00000000 register

LogicRst 0x00000001 register

Table 9: Logic clocks subsystem µHAL nodes

Node-Id Leaf address Type
TriggerLength 0x00000000 register

TrigStartupDeadTime 0x00000001 register
TrigInterpulseDeadTime 0x00000002 register

TriggerDelay 0x00000003 register
NMaxTriggers 0x00000004 register

TrigEvtNumber 0x00000005 register
RstTriggerCounter 0x00000006 register

TrigRearmDeadTime 0x00000007 register

Table 10: Trigger generator subsystem µHAL nodes

6.4 TimePix

Synchronize TimePix and TLU timestamp counter via common system clock. Provide
DUT with triggers if needed. Write DUT and TimePix data to separate files and combine
offline. One possible refinement[?] is that the DUT can be “EUDAQ” compatible. Then
only one data combiner is needed - TimePix with EUDAQ.

7 Specifications

Parameter Value

Maximum master clock frequency, Fmaster 80MHz
Master clock jitter To Be Decided.1

Timestamp precision 1 ns
Minimum pulse width (time above threshold ) 5 ns
Latency < XXX cycles 2

Maximum instantaneous trigger rate 3 Fmaster

Maximum sustained trigger rate 1 MHz

8 High Rate Tests

LHC sensors need 400MHz/cm2 for pile-up tests. The TLU will not be able to cope with
this rate of triggers except by using very small area scintillator. In addition, even if the
TLU could cope the MAPS telescope sensors would not. However, it has been pointed
out[?] that it would still be possible to conduct efficiency studies by placing the telescope
and DUT in a moderate rate beam and then illuminating the DUT with a high flux of

15



Node-Id Leaf address Type
ShutterLength 0x00000000 register

ShutStartupDeadTime 0x00000001 register
ShutInterpulseDeadTime 0x00000002 register

ShutterDelay 0x00000003 register
NMaxShutters 0x00000004 register

ShutEvtNumber 0x00000005 register
RstShutterCounter 0x00000006 register

ShutRearmDeadTime 0x00000007 register

Table 11: Shutter generator subsystem µHAL nodes

Node-Id Leaf address Type
SpillLength 0x00000000 register

SpillStartupDeadTime 0x00000001 register
SpillInterpulseDeadTime 0x00000002 register

SpillDelay 0x00000003 register
NMaxSpills 0x00000004 register

SpillEvtNumber 0x00000005 register
RstSpillCounter 0x00000006 register

SpillRearmDeadTime 0x00000007 register

Table 12: Spill generator subsystem µHAL nodes

radiation from either a radioactive source or an X-ray generator. That is to say, use the
same approach as the Gamma Irradiation Facility[?] at CERN.

16



Node-Id Leaf address Type
EnableRecordData 0x00000000 register

Table 13: Event formatter subsystem µHAL nodes

17


	Introduction
	Hardware design
	RJ45 connector
	HDMI connectors

	Firmware
	IPbus
	Time to digital converter (TDC)
	Data Format
	Handshake between TLU and DUT

	Software
	HAL
	EUDAQ
	Configurations

	Hardware Interfaces
	CALICE
	TimePix
	LHC
	Existing EUDAQ Users

	Integrating Different Detectors 
	CALICE
	TPC
	Triggered Detectors (e.g. ATLAS, CMS Pixels)
	TimePix

	Specifications
	High Rate Tests

