
Paolo Baesso

AIDA Trigger logic unit (TLU)

25th August 2017

i

Board fmc_tlu_v1d.

Paolo Baesso - 2016
paolo.baesso@bristol.ac.uk

Contents

Contents ii

1 Preparation 1
1.1 I/O voltage setting . 1
1.2 Xilinx programming cable . 2

2 TLU Hardware 5
2.1 Inputs and interfaces . 5
2.2 Clock LEMO . 7
2.3 Trigger inputs . 7
2.4 I2C slaves . 8

3 Clock 11
3.1 Input selection . 11
3.2 Logic clocks registers . 12

4 DUT signals 13
4.1 Trigger inputs . 14
4.2 Trigger logic . 14
4.3 Event buffer . 20

5 Appendix 21

6 Functions 25
6.1 Functions . 26

7 IPBus Registers 29

ii

Chapter 1

Preparation

Before powering the Trigger Logic Unit (TLU) it is necessary to follow a few
steps to ensure the board and the Field Programmable Gate Array (FPGA)
work correctly.
The FMC_TLU_v1d is designed to plug onto a carrier FPGA board like any
other FPGA Mezzanine Card (FMC) mezzanine board, although its form
factor does not comply with the ANSI-VITA-57-1 standard.
The firmware developed at University of Bristol is targeted to work with the
Enclustra AX3 board, which must be plugged onto a PM3 base, also produced
by Enclustra. The firmware is written on the FPGA using a Joint Test Action
Group (JTAG) interface. Typically a breakout board will be required to con-
nect the Xilinx programming cable to the Enclustra PM3.
Currently, it is recommended to use the following:

• MA-PM3-W-R5: Mars PM3 base board

• MA-AX3-35-1I-D8-R3: Marx AX3 module (hosts a Xilinx XC7A35T-
1CSG324I)

• MA-PM3-ACC-BASE: Accessory kit, including a JTAG breakout board
to connect Xilinx programming cables. Also includes a 12 V power sup-
ply to power the PM3.

1.1 I/O voltage setting

The I/O pins of the PM3 can be configured to operate at 2.5 V or 3.3 V; the
factory default is 2.5 V but the FMC_TLU_v1d requires 3.3 V logic. The user
should make sure to select the appropriate voltage by operating on DIP-switch
CFG-A/S1200 (pin 1 set to ON).
For reference, a top view of the board is provided in the appendix at page 21.

1

http://www.enclustra.com/en/home/

2 CHAPTER 1. PREPARATION

Warning
Please double check the PM3 board manual for the correct way
to change the I/O voltage setting. Enclustra has been chan-
ging their hardware recently.

1.2 Xilinx programming cable

The JTAG pins on the PM3 are located on the header J800 (20-way, 2.54 mm
pitch). The breakout board provided by Enclustra sits on top of the header
and connects the pins to a 14-way Molex milli-grid header so that it is pos-
sible to plug the Xiling programming cable directly onto it. However, when
the FMC_TLU_v1d is mounted on a base plate as shown in figure 1.1, the
breakout board has to be detached from the PM3 because it interferes with the
mounting screws.
The connection between J800 and the breakout can be achieved by using two
standard 20-way Insulation-Displacement Contact (IDC) cables as shown in
figure 1.2.

Figure 1.1: FMC_TLU_v1d and PM3 mounted on a base plate: in this configuration it is not
possible to install the breakout board on the PM3 because the mountings screws are in the way.

1.2. XILINX PROGRAMMING CABLE 3

Figure 1.2: Connecting the Xilinx programming cable to the PM3 in an ugly (but effective) way.

Chapter 2

TLU Hardware

Board FMC_TLU_v1d is an evolution of the miniTLU designed at the Uni-
versity of Bristol (UoB). The board shares a few features with the miniTLU
but also introduces several improvements. This chapter illustrates the main
features of the board to provide a general view of its capabilities and an un-
derstanding of how to operate it in order to communicate with the Device
Under Test (DUT)s.

2.1 Inputs and interfaces

FMC

The board must be plugged onto a FMC carrier board with an FPGA in order
to function correctly. The connection is achieved using a low pin count FMC
connector. The list of the pins used is provided in appendix at page 21.

DUT

The DUTs are connected to the TLU using standard size High-Definition
Multimedia Interface (HDMI) connectors1. In this version of the hardware, up
to four DUTs can be connected to the board. In this document the connectors
will be referred to as HDMI_DUT_1, HDMI_DUT_2, HDMI_DUT_3 and HDMI_DUT_4.
The connectors expect 3.3 V Low Voltage Differential Signaling (LVDS)
signals and are bi-directional, i.e. any differential pair can be configured to
be an output (signal from the TLU to the DUT) or an input (signals from
the DUT to the TLU) by using half-duplex line transceivers. Figure 2.1
illustrates how the differential pairs are connected to the transceivers.

1In the miniTLU hardware there were miniHDMI connectors.

5

6 CHAPTER 2. TLU HARDWARE

Table 2.1: HDMI pin connections.

HDMI PIN HDMI Signal Name Enable Signal Name

1 HDMI_CLK

ENABLE_CLK_TO_DUT

or
ENABLE_DUT_CLK_FROM_FPGA

2 GND –

3 HDMI_CLK *
ENABLE_CLK_TO_DUT

or
ENABLE_DUT_CLK_FROM_FPGA

4 CONT ENABLE_CONT_FROM_FPGA

5 GND –
6 CONT* ENABLE_CONT_FROM_FPGA

7 BUSY ENABLE_BUSY_FROM_FPGA

8 GND –
9 BUSY* ENABLE_BUSY_FROM_FPGA

10 SPARE ENABLE_SPARE_FROM_FPGA

11 GND –
12 SPARE* ENABLE_SPARE_FROM_FPGA

13 n.c.
14 HDMI_POWER –
15 TRIG ENABLE_TRIG_FROM_FPGA

16 TRIG* ENABLE_TRIG_FROM_FPGA

17 GND

18 n.c.
19 n.c.

Note
The input part of the transceiver is configured to be always on.
This means that signals going into the TLU are always routed
to the logic (FPGA). By contrast, the output transceivers have
to be enabled and are off by default: signal sent from the logic
to the DUTs cannot reach the devices unless the corresponding
enable signal is active.

Table 2.1 shows the pin naming and the corresponding output enable signal.
The clock pairs have two different enable signals to select the clock source
(see section 3 for more details). In general only one of the clock sources
should be active at any time.
The enable signals can be configured by programming two General Pur-
pose Input/Output (GPIO) bus expanders via Inter-Integrated Circuit (I2C)
interface as described in section 2.4. In terms for functionalities, the four
HDMI connectors are identical with one exception: the clock signal from

2.2. CLOCK LEMO 7

<< SIGNAL FROM FPGA OUTPUT

>> SIGNAL TO FPGA INPUT

ENABLE FOR SIGNAL OUT

always active

DUT

EN
A

B
LE

EN
A

B
LE

TLU

Figure 2.1: Internal configuration of the HDMI pins for the DUTs. The path from the DUT to the
FPGA is always active. The path from the FPGA to the DUT can be enabled or disabled by the
user.

HDMI_DUT_4 can be used as reference for the clock generator chip mounted on
the hardware. For more details on this functionality refer to section 3.

2.2 Clock LEMO

The board hosts a two-pin LEMO connector that can be used to provide a
reference clock to the clock generator (see section 3) or to output the clock
from the TLU to the external world, for instance to use it as a reference for
another TLU. The signal level is 3.3 V LVDS.
As for the differential pairs of the DUTs, the pins of this connector are wired to
a transceiver configured to always accept the incoming signals. The outgoing
direction must be enabled by using the ENABLE_CLK_TO_LEMO signal, which
can be configured using the bus expander described in in section 2.4.

2.3 Trigger inputs

Board FMC_TLU_v1d can accept up to six trigger inputs over the LEMO con-
nectors labelled IN_1, IN_2, IN_3, IN_4, IN_5 and IN_6. The FMC_TLU_v1d
uses internal high-speed2 discriminators to detect a valid trigger signal. The
voltage thresholds can be adjusted independently for each input in a range
from -1.3 V to +1.3 V with 40 µV resolution.
The adjustment is performed by writing to two 16-bit Digital to Analog Con-
verter (DAC)s via I2C interface as described in section 2.4.
The DACs can either use an internal reference voltage of 2.5 V or an external
one of 1.3 V provided by the TLU: it is recommended to choose the external
one by configuring the appropriate register in the devices.

2500±30 ps propagation delay.

8 CHAPTER 2. TLU HARDWARE

Table 2.2: DAC outputs and corresponding threshold inputs.

Output
DAC2(Ic2) DAC1 (Ic1)

Threshold 0 0
Threshold 1 1
Threshold 2 0
Threshold 3 1
Threshold 4 2
Threshold 5 3

The correspondence between DAC slave and thresholds is shown in table 2.2.

2.4 I2C slaves

The I2C interface on the FMC_TLU_v1d can be used to configured
several features of the board. Table 2.3 lists all the valid addresses
and the corresponding slave on the board. The Enclustra lines refer
to slaves located on the PM3 board; these slaves can be ignored
with the exception of the bus expander. The Enclustra expander
is used to enable/disable the I2C lines going to the FMC connector.

Note
After a power cycle the Enclustra expander is configured to
disable the I2C interface pins. This means that it is impossible
to communicate to any I2C slave on the TLU until the ex-
pander has been enabled.
The interface is enable by setting bit 7 to 0 on register 0x01 of
the Enclustra expander.

Once the interface is enabled it is possible to read and write to the devices
listed in the top part of table 2.3. The user should reference the manual of each
individual component to determine the register that must be addressed. The
rest of this section is meant to provide an overview of the slave functionalities.

DAC

Each DAC has four outputs that can be configured independently. DAC1 is
used to configure the thresholds of the first four trigger inputs; DAC2 config-
ures the remaining two thresholds.
The DACs should be configured to use the TLU voltage reference of 1.3 V.
In these conditions, writing a value of 0x00000 to a DAC output will set the
corresponding threshold to -1.3 V while a value of 0xFFFF will set it to +1.3 V.

2.4. I2C SLAVES 9

Table 2.3: I2C addresses of the TLU.

CHIP ID FUNCTION ADDRESS
IC1 AD5665RBRUZ DAC1 0x1F
IC2 AD5665RBRUZ DAC2 0x13
IC5 24AA025E48T EEPROM 0x50
IC6 PCA9539PW I2C Expander1 0x74
IC7 PCA9539PW I2C Expander2 0x75
IC8_9 Si5345A Clock Generator 0x68
Enclustra slaves

Enclustra Bus Expander 0x21
Enclustra System Monitor 0x21
Enclustra EEPROM 0x54
Enclustra slave 0x64

EEPROM

The Electrically Erasable Programmable Read-Only Memory (EEPROM) loc-
ated on the board contains a factory-set unique number, used to identify each
FMC_TLU_v1d unequivocally. The number is comprised of six bytes written
in as many memory locations.
The identifier is always in the form: 0xD8 80 39 XX XX XX with the top three
bytes indicating the manufacturer and the bottom three unique to each device.

Bus expander

The expanders are used as electronic switched to enable and disable indi-
vidual lines. Each expander has two 8-bit banks; the values of the bits, as
well as their direction (input/output) can be configured via the I2C interface.
For the purpose of the TLU, all the expander pins should be configured as
outputs since they must drive the enable signals on the DUT transceivers.

Clock generator

The clock for FMC_TLU_v1d can be generated using various external or in-
ternal references (see section 3 for further details). In order to reduce any jitter
from the clock source and to provide a stable clock, the board hosts a Si5345
clock generator that needs to be configured via I2C interface.
The configuration involves writing ∼380 register values. A configuration file,
containing all the register addresses and the corresponding values, can be gen-
erated using the ClockBuilder tool available from Silicon Labs.
The registers addresses between 0x026B and 0x0272 contain user-defined val-
ues that can be used to identify the configuration version: it is advisable to
check those registers and ensure that they contain the correct code to ensure

http://www.enclustra.com/en/home/

10 CHAPTER 2. TLU HARDWARE

that the chip is configured according to the TLU specifications.

TLU Producer
When using the TLU producer to configure hardware, the loc-
ation of the configuration file can be specified by setting the
CLOCK_CFG_FILE value in the conf file for the producer.
If no value is specified, the software will look for the config-
uration file ../conf/confClk.txt i.e. if the euRun binary file
is located in ./eudaq/bin, then the default configuration file
should reside in ./eudaq/conf. The configuration will pro-
duce an error if the file is not found.

Chapter 3

Clock

The TLU can use various sources to produce a stable 40 MHz clock1. A Low-
voltage Positive Emitter-Coupled Logic (LVPECL) crystal provides the refer-
ence 50 MHz clock for a Si5345A jitter attenuator. The Si5345A can accept up
to four clock sources and use them to generate the required output clocks.
In the TLU the possible sources are: pair of external pins LK4_9 and LK3_9,
differential LEMO connector LM1_9, FPGA pins (CLK_FROM_FPGA) and one of
the four HDMI connectors (HDMI_DUT_4).
The low-jitter clock generated by the Si5345A can be distributed to up to ten
recipients. In the TLU these are: the four DUTs via HDMI connectors, the dif-
ferential LEMO cable, the FPGA, connector J1 as a differential pair (pins 4 and
6) and as a single ended signal (pin 8), two test resistors R24_9 and R54_9.
The DUTs can receive the clock either from the Si5435A or directly from
the FPGA: when provided by the clock generator, the signal name is
CLK_TO_DUT and is enabled by signal ENABLE_CLK_TO_DUT; when the signal
is provided directly from the FPGA the line used is DUT_CLK_FROM_FPGA and
is enabled by ENABLE_DUT_CLK_FROM_FPGA.
The firmware uses the clock generated by the Si5345A except for the block
enclustra_ax3_pm3_infra which relies on a crystal mounted on the Enclus-
tra board to provide the IPBus functionalities (in this way, at power up the
board can communicate via IPBus even if the Si5345A is not configured).

3.1 Input selection

The Si5345 has four inputs that can be selected to provide the clock alignment;
the selection can be automatic or user-defined.

1For some applications a 50 MHz clock will be required instead

11

12 CHAPTER 3. CLOCK

Table 3.1: Si5345 Input Selection Configuration.

Register Name Hex Address [Bit Field] Function

CLK_SWITCH_MODE 0x0536[1:0]

Selects manual or automatic switching modes.
Automatic mode can be revertive or non-revertive.
Selections are the following:
00 Manual
01 Automatic non-revertive
02 Automatic revertive
03 Reserved

IN_SEL_REGCTRL 0x052A [0] 0 for pin controlled clock selection
1 for register controlled clock selection

IN_SEL 0x052A [2:1]

0 for IN0
1 for IN1
2 for IN2
3 for IN3 (or FB_IN)

3.2 Logic clocks registers

LogicClocksCSR: in the new TLU the selection of the clock source is done by
programming the Si5345. As a consequence, there is no reason to write to this
register. Reading it back returns the status of the PLL on bit 0, so this should
read 0x1.

Chapter 4

DUT signals

In the old firmware the clock signals (dut_clk_n_o, dut_clk_p_o) were
configured as input/output. The new hardware has the lines separated so
dut_clk_p_i is the input vector and dut_clk_p_o the output one.

13

14 CHAPTER 4. DUT SIGNALS

4.1 Trigger inputs

The status register (SerdesRst) is as follows:

• bit 0: reset the ISERDES

• bit 1: reset the trigger counters

• bit 2: calibrate IDELAY: This seems to be disconnected at the moment.

• bit 3: fixed to 0

• bit 4, 5: status of thresholdDeserializer(Input0). When the IDELAY
modules (prompt, delayed) have reached the correct delay, these two
bits should read 00.

• bit 6, 7: status of thresholdDeserializer(Input1)

• bit 8, 9: status of thresholdDeserializer(Input2)

• bit 10, 11: status of thresholdDeserializer(Input3)

• bit 12, 13: status of thresholdDeserializer(Input4)

• bit 14, 15: status of thresholdDeserializer(Input5)

• bit 16, 19: fixed to 0

• bit 20: s_deserialized_threshold_data(Input0)(7)

• bit 21: s_deserialized_threshold_data(Input1)(7)

• bit 22: s_deserialized_threshold_data(Input2)(7)

• bit 23: s_deserialized_threshold_data(Input3)(7)

• bit 24: s_deserialized_threshold_data(Input4)(7)

• bit 25: s_deserialized_threshold_data(Input5)(7)

9 bits are used to determine trigger edges. 8 are from the deserializers, 1 is
added as the LSB and is the MSB from the previous word.

4.2 Trigger logic

The TLU has six trigger inputs than can be used to generate a valid trigger
event. The number of possible different trigger combinations is 26 = 64 so
a 64-bit word can be used to decide the valid combinations. In the hard-
ware the 64-bit word is split into two 32-bit words and the rules to gener-
ate the trigger can be specified by the user by writing in the two 32-bit re-
gisters TriggerPattern_highW and TriggerPattern_lowW: the first stores the

4.2. TRIGGER LOGIC 15

32 most significative bits of the trigger word, the latter stores the least signi-
ficative bits.
The user can select any combination of the trigger inputs and declare it a valid
trigger pattern by setting a 1 in the corresponding trigger configuration word.
Tables 4.1 and 4.2 show an example of how to determine the trigger config-
uration words: whenever a valid trigger combination is encountered, the user
should put a 1 in the corresponding row under the PATTERN column. The
pattern thus obtained is the required word to write in the configuration re-
gister.
It is important to note that this solution allows the user to set veto pattern as
well: for instance if only word 31 from table 4.1 were picked, then the TLU
would only register a trigger when the combination I5 + I4 + I3 + I2 + I1 + I0
was presented at its inputs. In other words, in this specific case I5 would act
as a veto signal.
The default configuration in the firmware is Hi= 0xFFFFFFFF, Low= 0xFF-
FEFFFE, which means that as long as any trigger input fires, a trigger will be
generated. These words are loaded in the FPGA every time the firmware is
flushed.

Trigger logic definition
The user should pay attention to what trigger logic they want
to define in order to avoid confusion in the data.
A “1” in the logic table means that the corresponding input
must be active to produce a valid trigger. Similarly, a “0” in-
dicates that the corresponding input must be inactive (i.e. is a
veto, not an ignore). Any change in input configuration will
cause the logic to re-assess the trigger status. The following
section gives a brief example.

Example

In this example we have connected a pulser to two inputs of the TLU, namely
input 0 and input 4. The inputs fire with a small, random delay with respect
to each other.
In order to ensure that the signals overlap adequately, we use the stretch re-
gister (see chapter 7) to increase the length of the pulses: we extend in0 to 10
clock cycles and in4 to 8 clock cycles. The resulting signals are shown in fig-
ure 4.1.
We can now define the trigger logic to be used to assert a valid trigger: we
only consider the lower 32-bits of the trigger word and see how different val-
ues can produce very different results.

• Trigger Least Significant Bit (LSB) word= 0x00020000. This indicates
that the only valid trigger combination occurs when both in0 and in4

16 CHAPTER 4. DUT SIGNALS

Table 4.1: Example of configuration word for the least significative bits of the trigger registers: the
only valid configuration is represented by I5 + I4 + I3 + I2 + I1 + I0, i.e. a trigger is accepted if all
the inputs, except I5, present a logic 1 at the same time. The user would then write the resulting
word 0x80000000 in the TriggerPattern_lowW register.

DEC I5 I4 I3 I2 I1 I0 PATTERN CONFIG.
WORD 2n

0 0 0 0 0 0 0 0

0

LO
W

ES
T

32
-b

it
s

1
1 0 0 0 0 0 1 0 2
2 0 0 0 0 1 0 0 4
3 0 0 0 0 1 1 0 8
4 0 0 0 1 0 0 0

0

16
5 0 0 0 1 0 1 0 32
6 0 0 0 1 1 0 0 64
7 0 0 0 1 1 1 0 128
8 0 0 1 0 0 0 0

0

256
9 0 0 1 0 0 1 0 512
10 0 0 1 0 1 0 0 1024
11 0 0 1 0 1 1 0 2048
12 0 0 1 1 0 0 0

0

4096
13 0 0 1 1 0 1 0 8192
14 0 0 1 1 1 0 0 16384
15 0 0 1 1 1 1 0 32768
16 0 1 0 0 0 0 0

0

65536
17 0 1 0 0 0 1 0 131072
18 0 1 0 0 1 0 0 262144
19 0 1 0 0 1 1 0 524288
20 0 1 0 1 0 0 0

0

1048576
21 0 1 0 1 0 1 0 2097152
22 0 1 0 1 1 0 0 4194304
23 0 1 0 1 1 1 0 8388608
24 0 1 1 0 0 0 0

0

16777216
25 0 1 1 0 0 1 0 33554432
26 0 1 1 0 1 0 0 67108864
27 0 1 1 0 1 1 0 134217728
28 0 1 1 1 0 0 0

8

268435456
29 0 1 1 1 0 1 0 536870912
30 0 1 1 1 1 0 0 1073741824
31 0 1 1 1 1 1 1 2147483648

4.2. TRIGGER LOGIC 17

Table 4.2: Example of the most significative word of the register: a valid trigger is obtained when
the inputs show the same configuration as row DEC 36, 37, 38, 39, 41, 43 and 63. These con-
figuration are in logic OR with that presented in table 4.1. The resulting configuration word is
0x80000AF0.

DEC I5 I4 I3 I2 I1 I0 PATTERN CONFIG.
WORD 2n

32 1 0 0 0 0 0 0

0

H
IG

H
ES

T
32

-b
it

s

1
33 1 0 0 0 0 1 0 2
34 1 0 0 0 1 0 0 4
35 1 0 0 0 1 1 0 8
36 1 0 0 1 0 0 1

F

16
37 1 0 0 1 0 1 1 32
38 1 0 0 1 1 0 1 64
39 1 0 0 1 1 1 1 128
40 1 0 1 0 0 0 0

A
256

41 1 0 1 0 0 1 1 512
42 1 0 1 0 1 0 0 1024
43 1 0 1 0 1 1 1 2048
44 1 0 1 1 0 0 0

0

4096
45 1 0 1 1 0 1 0 8192
46 1 0 1 1 1 0 0 16384
47 1 0 1 1 1 1 0 32768
48 1 1 0 0 0 0 0

0

65536
49 1 1 0 0 0 1 0 131072
50 1 1 0 0 1 0 0 262144
51 1 1 0 0 1 1 0 524288
52 1 1 0 1 0 0 0

0

1048576
53 1 1 0 1 0 1 0 2097152
54 1 1 0 1 1 0 0 4194304
55 1 1 0 1 1 1 0 8388608
56 1 1 1 0 0 0 0

0

16777216
57 1 1 1 0 0 1 0 33554432
58 1 1 1 0 1 0 0 67108864
59 1 1 1 0 1 1 0 134217728
60 1 1 1 1 0 0 0

8

268435456
61 1 1 1 1 0 1 0 536870912
62 1 1 1 1 1 0 0 1073741824
63 1 1 1 1 1 1 1 2147483648

18 CHAPTER 4. DUT SIGNALS

Figure 4.1: Input pulses (yellow) and corresponding stretched signals (red). Input 0 is stretched
by 10 cycles, input 4 by 8, hence the difference in pulse widths.

Figure 4.2: Trigger configuration 0x00020000. The valid trigger (blue) is asserted only when both
signals are high. This condition occurs at frame 39. The trigger is asserted on the following frame.

Figure 4.3: Trigger configuration 0x00020002. The valid trigger (blue) is asserted if in0 is high OR
when in0 and in4 are both high at the same time.

are high. The valid trigger goes high 1 clock cycle after this condition is
met and remains high up to 1 clock cycle after the condition is no longer
valid. This is illustrated in figure 4.2.

• Trigger LSB word= 0x00020002. This indicates that a valid trigger is
achieved in two separated configurations (in logic OR): when both
inputs are high at the same time (as in the previous case) or if in0 is
active on its own. This is illustrated in figure 4.3. It can be seen that the
valid trigger is asserted immediately one clock cycle after in0 is high
and remains high as long as this condition is met. One might assume
that specifying the combination with input 4 is redundant, but the
following example should show that this is not the case.

4.2. TRIGGER LOGIC 19

Figure 4.4: Trigger configuration 0x00000002. The valid trigger (blue) is asserted only when in0 is
active on its own. As such, two separated trigger pulses are produced because in4 goes high and
returns low before in0.

• Trigger LSB word= 0x00000002. This indicates that the only valid
configuration is the one where only in0 is high. It is important to
understand that in this configuration all other inputs act as veto. This
might produce unexpected results if the user is not careful1.
In figure 4.4 it is possible to see that the logic produces two separated
trigger valid pulses, both shorter than the ones in previous examples:
the first one is due to in0 going high while in4 is low. As soon as in4
goes high, the trigger condition is no longer met. When in4 returns low,
a trigger condition is met again because in0 is still high. In this specific
case, the double pulse is caused by the different width of the pulses.

1Specifically, pulse stretch, pulse delay and trigger logic must be configured correctly to avoid
unwanted results.

20 CHAPTER 4. DUT SIGNALS

4.3 Event buffer

The event buffer IPBus slave has four registers. Writing to EventFifoCSR will
reset the First In First Out (FIFO). Reading from either of the register will put
their data on the IPBus data line.
Reading from EventFifoCSR returns the following:

• bit 0: FIFO empty flag

• bit 1: FIFO almost empty flag

• bit 2: FIFO almost full flag

• bit 3: FIFO full flag

• bit 4: FIFO programmable full flag

• other bits: 0

Chapter 5

Appendix

21

F
P

G
A

 S
id

e

N
E

T
 N

A
M

E
F

M
C

_
LA

J4
F

M
C

 N
A

M
E

P
A

C
K

A
G

E
_

P
IN

V
D

H
L

N
A

M
E

F
P

G
A

 I
N

/O
U

T
C

O
N

S
T

R
A

IN
T

 I
N

S
T

R
U

C
T

IO
N

B
E

A
M

_
T

R
IG

G
E

R
_

P
<

0
>

F
M

C
_

LA
<

3
2

>
H

3
7

LA
3

2
_

P
B

1
th

re
sh

o
ld

_
d

is
cr

_
p

_
i[

0
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 B

1
 [

g
e

t_
p

o
rt

s
{t

h
re

sh
o

ld
_

d
is

cr
_

p
_

i[
0

]}
]

B
E

A
M

_
T

R
IG

G
E

R
_

P
<

1
>

F
M

C
_

LA
<

3
3

>
G

3
6

LA
3

3
_

P
C

4
th

re
sh

o
ld

_
d

is
cr

_
p

_
i[

1
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 C

4
 [

g
e

t_
p

o
rt

s
{t

h
re

sh
o

ld
_

d
is

cr
_

p
_

i[
1

]}
]

B
E

A
M

_
T

R
IG

G
E

R
_

P
<

2
>

F
M

C
_

LA
<

3
0

>
H

3
4

LA
3

0
_

P
K

2
th

re
sh

o
ld

_
d

is
cr

_
p

_
i[

2
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 K

2
 [

g
e

t_
p

o
rt

s
{t

h
re

sh
o

ld
_

d
is

cr
_

p
_

i[
2

]}
]

B
E

A
M

_
T

R
IG

G
E

R
_

P
<

3
>

F
M

C
_

LA
<

3
1

>
G

3
3

LA
3

1
_

P
C

6
th

re
sh

o
ld

_
d

is
cr

_
p

_
i[

3
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 C

6
 [

g
e

t_
p

o
rt

s
{t

h
re

sh
o

ld
_

d
is

cr
_

p
_

i[
3

]}
]

B
E

A
M

_
T

R
IG

G
E

R
_

P
<

4
>

F
M

C
_

LA
<

2
8

>
H

3
1

LA
2

8
_

P
J4

th
re

sh
o

ld
_

d
is

cr
_

p
_

i[
4

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 J
4

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
p

_
i[

4
]}

]

B
E

A
M

_
T

R
IG

G
E

R
_

P
<

5
>

F
M

C
_

LA
<

2
9

>
G

3
0

LA
2

9
_

P
H

1
th

re
sh

o
ld

_
d

is
cr

_
p

_
i[

5
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 H

1
 [

g
e

t_
p

o
rt

s
{t

h
re

sh
o

ld
_

d
is

cr
_

p
_

i[
5

]}
]

B
E

A
M

_
T

R
IG

G
E

R
_

N
<

0
>

F
M

C
_

LA
*

<
3

2
>

H
3

8
LA

3
2

_
N

A
1

th
re

sh
o

ld
_

d
is

cr
_

n
_

i[
0

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 A
1

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
n

_
i[

0
]}

]

B
E

A
M

_
T

R
IG

G
E

R
_

N
<

1
>

F
M

C
_

LA
*

<
3

3
>

G
3

7
LA

3
3

_
N

B
4

th
re

sh
o

ld
_

d
is

cr
_

n
_

i[
1

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 B
4

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
n

_
i[

1
]}

]

B
E

A
M

_
T

R
IG

G
E

R
_

N
<

2
>

F
M

C
_

LA
*

<
3

0
>

H
3

5
LA

3
0

_
N

K
1

th
re

sh
o

ld
_

d
is

cr
_

n
_

i[
2

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 K
1

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
n

_
i[

2
]}

]

B
E

A
M

_
T

R
IG

G
E

R
_

N
<

3
>

F
M

C
_

LA
*

<
3

1
>

G
3

4
LA

3
1

_
N

C
5

th
re

sh
o

ld
_

d
is

cr
_

n
_

i[
3

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 C
5

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
n

_
i[

3
]}

]

B
E

A
M

_
T

R
IG

G
E

R
_

N
<

4
>

F
M

C
_

LA
*

<
2

8
>

H
3

2
LA

2
8

_
N

H
4

th
re

sh
o

ld
_

d
is

cr
_

n
_

i[
4

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 H
4

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
n

_
i[

4
]}

]

B
E

A
M

_
T

R
IG

G
E

R
_

N
<

5
>

F
M

C
_

LA
*

<
2

9
>

G
3

1
LA

2
9

_
N

G
1

th
re

sh
o

ld
_

d
is

cr
_

n
_

i[
5

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 G
1

 [
g

e
t_

p
o

rt
s

{t
h

re
sh

o
ld

_
d

is
cr

_
n

_
i[

5
]}

]

P
1

7
e

n
cl

u
st

ra
_

cl
k

In

C
LK

_
T

O
_

F
P

G
A

_
P

F
M

C
_

C
LK

0
_

M
2

C
_

P
H

4
C

LK
0

_
M

2
C

_
P

T
5

sy
sc

lk
_

4
0

_
i_

p
In

se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 T

5
 [

g
e

t_
p

o
rt

s
{s

y
sc

lk
_

4
0

_
i_

p
}]

C
LK

_
T

O
_

F
P

G
A

_
N

F
M

C
_

C
LK

0
_

M
2

C
_

N
H

5
C

LK
0

_
M

2
C

_
N

T
4

sy
sc

lk
_

4
0

_
i_

n
In

se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 T

4
 [

g
e

t_
p

o
rt

s
{s

y
sc

lk
_

4
0

_
i_

n
}]

C
LK

_
F

R
O

M
_

F
P

G
A

_
P

F
M

C
_

C
LK

1
_

M
2

C
_

P
G

2
C

LK
1

_
M

2
C

_
P

E
3

sy
sc

lk
_

5
0

_
o

_
p

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 E

3
 [

g
e

t_
p

o
rt

s
{s

y
sc

lk
_

5
0

_
o

_
p

}]

C
LK

_
F

R
O

M
_

F
P

G
A

_
N

F
M

C
_

C
LK

1
_

M
2

C
_

N
G

3
C

LK
1

_
M

2
C

_
N

D
3

sy
sc

lk
_

5
0

_
o

_
n

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 D

3
 [

g
e

t_
p

o
rt

s
{s

y
sc

lk
_

5
0

_
o

_
n

}]

I2
C

_
R

E
S

E
T

_
N

F
M

C
_

LA
<

2
1

>
H

2
5

LA
2

1
_

P
C

2
i2

c_
re

se
t

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 C

2
 [

g
e

t_
p

o
rt

s
{i

2
c_

re
se

t}
]

G
P

IO
F

M
C

_
LA

*
<

2
4

>
H

2
9

LA
2

4
_

N
F

6
g

p
io

In
/O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 F
6

 [
g

e
t_

p
o

rt
s

{g
p

io
}]

C
LK

_
G

E
N

_
R

S
T

_
N

F
M

C
_

LA
*

<
2

1
>

H
2

6
LA

2
1

_
N

C
1

cl
k

_
g

e
n

_
rs

t
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 C
1

 [
g

e
t_

p
o

rt
s

{c
lk

_
g

e
n

_
rs

t}
]

C
LK

_
G

E
N

_
LO

L_
N

F
M

C
_

LA
<

0
>

G
6

LA
0

0
_

P
_

C
C

In

C
O

N
T

_
T

O
_

F
P

G
A

<
0

>
F

M
C

_
LA

*
<

0
>

G
7

LA
0

0
_

N
_

C
C

P
5

co
n

t_
i[

0
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 P

5
 [

g
e

t_
p

o
rt

s
{c

o
n

t_
i[

0
]}

]

C
O

N
T

_
T

O
_

F
P

G
A

<
1

>
F

M
C

_
LA

*
<

1
>

D
9

LA
0

1
_

N
_

C
C

P
3

co
n

t_
i[

1
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 P

3
 [

g
e

t_
p

o
rt

s
{c

o
n

t_
i[

1
]}

]

C
O

N
T

_
T

O
_

F
P

G
A

<
2

>
F

M
C

_
LA

*
<

2
>

H
8

LA
0

2
_

N
N

6
co

n
t_

i[
2

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 N
6

 [
g

e
t_

p
o

rt
s

{c
o

n
t_

i[
2

]}
]

C
O

N
T

_
T

O
_

F
P

G
A

<
3

>
F

M
C

_
LA

*
<

3
>

G
1

0
LA

0
3

_
N

L5
co

n
t_

i[
3

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 L
5

 [
g

e
t_

p
o

rt
s

{c
o

n
t_

i[
3

]}
]

S
P

A
R

E
_

T
O

_
F

P
G

A
<

0
>

F
M

C
_

LA
*

<
4

>
H

1
1

LA
0

4
_

N
M

1
sp

a
re

_
i[

0
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 M

1
 [

g
e

t_
p

o
rt

s
{s

p
a

re
_

i[
0

]}
]

S
P

A
R

E
_

T
O

_
F

P
G

A
<

1
>

F
M

C
_

LA
*

<
5

>
D

1
2

LA
0

5
_

N
N

4
sp

a
re

_
i[

1
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 N

4
 [

g
e

t_
p

o
rt

s
{s

p
a

re
_

i[
1

]}
]

S
P

A
R

E
_

T
O

_
F

P
G

A
<

2
>

F
M

C
_

LA
*

<
6

>
C

1
1

LA
0

6
_

N
N

1
sp

a
re

_
i[

2
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 N

1
 [

g
e

t_
p

o
rt

s
{s

p
a

re
_

i[
2

]}
]

S
P

A
R

E
_

T
O

_
F

P
G

A
<

3
>

F
M

C
_

LA
*

<
7

>
H

1
4

LA
0

7
_

N
M

2
sp

a
re

_
i[

3
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 M

2
 [

g
e

t_
p

o
rt

s
{s

p
a

re
_

i[
3

]}
]

T
R

IG
_

T
O

_
F

P
G

A
<

0
>

F
M

C
_

LA
*

<
8

>
G

1
3

LA
0

8
_

N
R

5
tr

ig
g

e
rs

_
i[

0
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 R

5
 [

g
e

t_
p

o
rt

s
{t

ri
g

g
e

rs
_

i[
0

]}
]

T
R

IG
_

T
O

_
F

P
G

A
<

1
>

F
M

C
_

LA
*

<
9

>
D

1
5

LA
0

9
_

N
R

2
tr

ig
g

e
rs

_
i[

1
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 R

2
 [

g
e

t_
p

o
rt

s
{t

ri
g

g
e

rs
_

i[
1

]}
]

T
R

IG
_

T
O

_
F

P
G

A
<

2
>

F
M

C
_

LA
*

<
1

0
>

C
1

5
LA

1
0

_
N

T
1

tr
ig

g
e

rs
_

i[
2

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 T
1

 [
g

e
t_

p
o

rt
s

{t
ri

g
g

e
rs

_
i[

2
]}

]

T
R

IG
_

T
O

_
F

P
G

A
<

3
>

F
M

C
_

LA
*

<
1

1
>

H
1

7
LA

1
1

_
N

V
1

tr
ig

g
e

rs
_

i[
3

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 V
1

 [
g

e
t_

p
o

rt
s

{t
ri

g
g

e
rs

_
i[

3
]}

]

B
U

S
Y

_
T

O
_

F
P

G
A

<
0

>
F

M
C

_
LA

*
<

1
2

>
G

1
6

LA
1

2
_

N
T

6
b

u
sy

_
i[

0
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 T

6
 [

g
e

t_
p

o
rt

s
{b

u
sy

_
i[

0
]}

]

B
U

S
Y

_
T

O
_

F
P

G
A

<
1

>
F

M
C

_
LA

*
<

1
3

>
D

1
8

LA
1

3
_

N
U

3
b

u
sy

_
i[

1
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 U

3
 [

g
e

t_
p

o
rt

s
{b

u
sy

_
i[

1
]}

]

B
U

S
Y

_
T

O
_

F
P

G
A

<
3

>
F

M
C

_
LA

*
<

1
4

>
C

1
9

LA
1

4
_

N
T

8
b

u
sy

_
i[

2
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 T

8
 [

g
e

t_
p

o
rt

s
{b

u
sy

_
i[

2
]}

]

S
ch

e
m

a
ti

c
si

d
e

B
U

S
Y

_
T

O
_

F
P

G
A

<
2

>
F

M
C

_
LA

*
<

1
5

>
H

2
0

LA
1

5
_

N
L4

b
u

sy
_

i[
3

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 L
4

 [
g

e
t_

p
o

rt
s

{b
u

sy
_

i[
3

]}
]

D
U

T
_

C
LK

_
T

O
_

F
P

G
A

<
0

>
F

M
C

_
LA

*
<

1
6

>
G

1
9

LA
1

6
_

N
L3

d
u

t_
cl

k
_

i[
0

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 L
3

 [
g

e
t_

p
o

rt
s

{d
u

t_
cl

k
_

i[
0

]}
]

D
U

T
_

C
LK

_
T

O
_

F
P

G
A

<
1

>
F

M
C

_
LA

*
<

1
7

>
D

2
1

LA
1

7
_

N
_

C
C

F
3

d
u

t_
cl

k
_

i[
1

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 F
3

 [
g

e
t_

p
o

rt
s

{d
u

t_
cl

k
_

i[
1

]}
]

D
U

T
_

C
LK

_
T

O
_

F
P

G
A

<
2

>
F

M
C

_
LA

*
<

1
8

>
C

2
3

LA
1

8
_

N
_

C
C

D
2

d
u

t_
cl

k
_

i[
2

]
In

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 D
2

 [
g

e
t_

p
o

rt
s

{d
u

t_
cl

k
_

i[
2

]}
]

D
U

T
_

C
LK

_
T

O
_

F
P

G
A

<
3

>
F

M
C

_
LA

*
<

1
9

>
H

2
3

LA
1

9
_

N
G

3
d

u
t_

cl
k

_
i[

3
]

In
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 G

3
 [

g
e

t_
p

o
rt

s
{d

u
t_

cl
k

_
i[

3
]}

]

C
O

N
T

_
F

R
O

M
_

F
P

G
A

<
0

>
F

M
C

_
LA

<
0

>
G

6
LA

0
0

_
P

_
C

C
N

5
co

n
t_

o
[0

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 N
5

 [
g

e
t_

p
o

rt
s

{c
o

n
t_

o
[0

]}
]

C
O

N
T

_
F

R
O

M
_

F
P

G
A

<
1

>
F

M
C

_
LA

<
1

>
D

8
LA

0
1

_
P

_
C

C
P

4
co

n
t_

o
[1

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 P
4

 [
g

e
t_

p
o

rt
s

{c
o

n
t_

o
[1

]}
]

C
O

N
T

_
F

R
O

M
_

F
P

G
A

<
2

>
F

M
C

_
LA

<
2

>
H

7
LA

0
2

_
P

M
6

co
n

t_
o

[2
]

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 M

6
 [

g
e

t_
p

o
rt

s
{c

o
n

t_
o

[2
]}

]

C
O

N
T

_
F

R
O

M
_

F
P

G
A

<
3

>
F

M
C

_
LA

<
3

>
G

9
LA

0
3

_
P

L6
co

n
t_

o
[3

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 L
6

 [
g

e
t_

p
o

rt
s

{c
o

n
t_

o
[3

]}
]

S
P

A
R

E
_

F
R

O
M

_
F

P
G

A
<

0
>

F
M

C
_

LA
<

4
>

H
1

0
LA

0
4

_
P

L1
sp

a
re

_
o

[0
]

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 L

1
 [

g
e

t_
p

o
rt

s
{s

p
a

re
_

o
[0

]}
]

S
P

A
R

E
_

F
R

O
M

_
F

P
G

A
<

1
>

F
M

C
_

LA
<

5
>

D
1

1
LA

0
5

_
P

M
4

sp
a

re
_

o
[1

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 M
4

 [
g

e
t_

p
o

rt
s

{s
p

a
re

_
o

[1
]}

]

S
P

A
R

E
_

F
R

O
M

_
F

P
G

A
<

2
>

F
M

C
_

LA
<

6
>

C
1

0
LA

0
6

_
P

N
2

sp
a

re
_

o
[2

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 N
2

 [
g

e
t_

p
o

rt
s

{s
p

a
re

_
o

[2
]}

]

S
P

A
R

E
_

F
R

O
M

_
F

P
G

A
<

3
>

F
M

C
_

LA
<

7
>

H
1

3
LA

0
7

_
P

M
3

sp
a

re
_

o
[3

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 M
3

 [
g

e
t_

p
o

rt
s

{s
p

a
re

_
o

[3
]}

]

T
R

IG
_

F
R

O
M

_
F

P
G

A
<

0
>

F
M

C
_

LA
<

8
>

G
1

2
LA

0
8

_
P

R
6

tr
ig

g
e

rs
_

o
[0

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 R
6

 [
g

e
t_

p
o

rt
s

{t
ri

g
g

e
rs

_
o

[0
]}

]

T
R

IG
_

F
R

O
M

_
F

P
G

A
<

1
>

F
M

C
_

LA
<

9
>

D
1

4
LA

0
9

_
P

P
2

tr
ig

g
e

rs
_

o
[1

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 P
2

 [
g

e
t_

p
o

rt
s

{t
ri

g
g

e
rs

_
o

[1
]}

]

T
R

IG
_

F
R

O
M

_
F

P
G

A
<

2
>

F
M

C
_

LA
<

1
0

>
C

1
4

LA
1

0
_

P
R

1
tr

ig
g

e
rs

_
o

[2
]

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 R

1
 [

g
e

t_
p

o
rt

s
{t

ri
g

g
e

rs
_

o
[2

]}
]

T
R

IG
_

F
R

O
M

_
F

P
G

A
<

3
>

F
M

C
_

LA
<

1
1

>
H

1
6

LA
1

1
_

P
U

1
tr

ig
g

e
rs

_
o

[3
]

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 U

1
 [

g
e

t_
p

o
rt

s
{t

ri
g

g
e

rs
_

o
[3

]}
]

B
U

S
Y

_
F

R
O

M
_

F
P

G
A

<
0

>
F

M
C

_
LA

<
1

2
>

G
1

5
LA

1
2

_
P

R
7

b
u

sy
_

o
[0

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 R
7

 [
g

e
t_

p
o

rt
s

{b
u

sy
_

o
[0

]}
]

B
U

S
Y

_
F

R
O

M
_

F
P

G
A

<
1

>
F

M
C

_
LA

<
1

3
>

D
1

7
LA

1
3

_
P

U
4

b
u

sy
_

o
[1

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 U
4

 [
g

e
t_

p
o

rt
s

{b
u

sy
_

o
[1

]}
]

B
U

S
Y

_
F

R
O

M
_

F
P

G
A

<
2

>
F

M
C

_
LA

<
1

4
>

C
1

8
LA

1
4

_
P

R
8

b
u

sy
_

o
[2

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 R
8

 [
g

e
t_

p
o

rt
s

{b
u

sy
_

o
[2

]}
]

B
U

S
Y

_
F

R
O

M
_

F
P

G
A

<
3

>
F

M
C

_
LA

<
1

5
>

H
1

9
LA

1
5

_
P

K
5

b
u

sy
_

o
[3

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 K
5

 [
g

e
t_

p
o

rt
s

{b
u

sy
_

o
[3

]}
]

D
U

T
_

C
LK

_
F

R
O

M
_

F
P

G
A

<
0

>
F

M
C

_
LA

<
1

6
>

G
1

8
LA

1
6

_
P

K
3

d
u

t_
cl

k
_

o
[0

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 K
3

 [
g

e
t_

p
o

rt
s

{d
u

t_
cl

k
_

o
[0

]}
]

D
U

T
_

C
LK

_
F

R
O

M
_

F
P

G
A

<
1

>
F

M
C

_
LA

<
1

7
>

D
2

0
LA

1
7

_
P

_
C

C
F

4
d

u
t_

cl
k

_
o

[1
]

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 F

4
 [

g
e

t_
p

o
rt

s
{d

u
t_

cl
k

_
o

[1
]}

]

D
U

T
_

C
LK

_
F

R
O

M
_

F
P

G
A

<
2

>
F

M
C

_
LA

<
1

8
>

C
2

2
LA

1
8

_
P

_
C

C
E

2
d

u
t_

cl
k

_
o

[2
]

O
u

t
se

t_
p

ro
p

e
rt

y
 P

A
C

K
A

G
E

_
P

IN
 E

2
 [

g
e

t_
p

o
rt

s
{d

u
t_

cl
k

_
o

[2
]}

]

D
U

T
_

C
LK

_
F

R
O

M
_

F
P

G
A

<
3

>
F

M
C

_
LA

<
1

9
>

H
2

2
LA

1
9

_
P

G
4

d
u

t_
cl

k
_

o
[3

]
O

u
t

se
t_

p
ro

p
e

rt
y

 P
A

C
K

A
G

E
_

P
IN

 G
4

 [
g

e
t_

p
o

rt
s

{d
u

t_
cl

k
_

o
[3

]}
]

Chapter 6

Functions

The following is a list of files containing the code for the TLU:

• ./eudaq2/user/eudet/misc/fmctlu_runcontrol.ini:
initialization file for the hardware. The location of the file can be passed
to the EUDAQ code in the Graphic User Interface (GUI).

• ./eudaq2/user/eudet/misc/fmctlu_runcontrol.conf:
configuration file. It contains all the parameters to be loaded in the TLU
at the beginning of the run. If this file is not found, EUDAQ will use
a list of default settings. The location of the file (and its name) can be
passed to the EUDAQ code in the GUI.

• ./eudaq2/user/eudet/misc/fmctlu_connection.xml:
define the IP address and address map of the TLU. The one listed is the
default location for the file. A different location can be specified with the
ConnectionFile option in the conf file for the TLU.

• ./eudaq2/user/eudet/misc/fmctlu_address.xml:
address map for the TLU. The location of the file is specified in the
fmctlu_connection.xml file.

• ./eudaq2/user/eudet/misc/fmctlu_clock_config.txt:
configuration for the Si5345 clock chip. In order for the hardware to
work a configuration file must be present. Those listed are the default
name and location for the file; a different file can be specified with the
CLOCK_CFG_FILE option in the conf file for the TLU.

• ./eudaq2/user/eudet/module/src/FMCTLU_Producer.cc:
eudaq producer for the TLU. Contains the methods to initialize, config-
ure, start, stop the TLU producer.

• ./eudaq2/user/eudet/hardware/src/FmctluController.cc:
Contains the definition of the hardware class for the TLU and the meth-
ods to set and read from its hardware, such as clock chip, DAC, etc. This

25

26 CHAPTER 6. FUNCTIONS

lever is abstract with respect to the actual hardware, so that if a future
version of the board uses different components it should be possible to
re-use this code.

• ./eudaq2/user/eudet/hardware/include/FmctluController.hh:
Headers for the controller.

• ./eudaq2/user/eudet/hardware/src/FmctluController.cxx:
Executable for the controller.

• ./eudaq2/user/eudet/hardware/src/FmctluHardware.cc:
This is the code that deals with the actual hardware on the TLU, and
contains specific instructions for the chips mounted in the current ver-
sion. It contains several classes for the ADC, the clock chip, the I/O
expanders etc.

• ./eudaq2/user/eudet/hardware/include/FmctluHardware.hh:
Header for the hardware.

• ./eudaq2/user/eudet/hardware/src/FmctluI2c.cc:
core functions used to read and write from I2C compatible slaves.

• ./eudaq2/user/eudet/hardware/include/FmctluI2c.hh:
Headers for the I2C core.

6.1 Functions

enableClkLEMO Enable or disable the output clock to the differential LEMO
connector.

enableHDMI Set the status of the transceivers for a specific HDMI connector.
When enable= False the transceivers are disabled and the connector can-
not send signals from FPGA to the outside world. When enable= True
then signals from the FPGA will be sent out to the HDMI.
In the configuration file use HDMIx_on = 0 to disable a channel and
HDMI1_on = 1 to enable it (x can be 1, 2, 3, 4).
NOTE: the other direction is always enabled, i.e. signals from the DUTs
are always sent to the FPGA.
NOTE: Clock source must be defined separately using SetDutClkSrc
(DUTClkSrc in python script).
NOTE: this is called DUTOutputs on the python scripts.

GetFW dsds

getSN dsd

I2C_enable dsd

InitializeClkChip

6.1. FUNCTIONS 27

InitializeDAC

InitializeIOexp

InitializeI2C

PopFrontEvent

ReadRRegister

ReceiveEvents

ResetEventsBuffer

SetDutClkSrc Set the clock source for a specific HDMI connector. The source
can be set to 0 (no clock), 1 (Si5345) or 2 (FPGA). In the configuration file
use HDMIx_on = N to select the source (x can be 1, 2, 3, 4, N is the clock
source).
NOTE: this is called DUTClkSrc on python scripts.

SetPulseStretchPk Takes a vector of six numbers, packs them (5-bits each)
and sends them to the PulseStretch register.

SetThresholdValue

setTrgPattern Writes two 32-bit words to define the trigger pattern for the
inputs. See section 4.1 for details.

SetWRegister

SetUhalLogLevel

Chapter 7

IPBus Registers

version Returns the current version of firmware used to program the TLU

————————

DUTINTERFACES

DUTMaskW Writing to this register allows to define which DUTs are active
when in AIDA mode. The lower 4 bits of the register can be used to
define the status of the DUTs: 1 for active, 0 for masked. hdmi1 is defined
by bit 0, hdmi2 is defined by bit 1, hdmi3 is defined by bit 2, hdmi4 is
defined by bit 3.

IgnoreDUTBusyW Writing to this register allows to ignore the busy signal
from a particular DUT while in AIDA mode. The lower 4 bits are used
to define the status for each device. A 1 indicates that the logic should
ignore busy signals from the specific DUT.

IgnoreShutterVetoW The LSB of this register can be written to define
whether the DUT should ignore the shutter veto signal. Normally, when
the shutter signal is asserted the DUT reports busy. If this bit is flag the
DUT will ignore the shutter signal.

DUTInterfaceModeW Write register to define the mode of operation for a
DUT. Two bits per device can be used to define the mode; currently only
two modes are available (AIDA, EUDET).
The bit pairs are packed from the LSB starting with hdmi1 (bits 0, 1),
hdmi2 (bits 2, 3), hdmi3 (bits 4, 5), hdmi4 (bits 6, 7).

• bit pair X0: EUDET

• bit pair X1: AIDA

DUTInterfaceModeModifierW Write register. This register only affects the
EUDET mode of operation. For each DUT two bits can be configured al-
though cyrrently only the lower of the pair is considere. The bit packing

29

30 CHAPTER 7. IPBUS REGISTERS

Table 7.1: IPBus register

NODE SUBNODE ADDRESS MASK PERMISSION
version 0x1 r
DUTInterfaces 0x1000

DUTMaskW 0x0 w
IgnoreDUTBusyW 0x1 w
IgnoreShutterVetoW 0x2 w
DUTInterfaceModeW 0x3 w
DUTInterfaceModeModifierW 0x4 w
DUTInterfaceModeR 0xB r
DUTInterfaceModeModifierR 0xC r
DUTMaskR 0x8 r
IgnoreDUTBusyR 0x9 r
IgnoreShutterVetoR 0xA r

Shutter 0x2000
ShutterStateW 0x0 w
PulseT0 0x1 w

i2c_master 0x3000
i2c_pre_lo 0x0 0xFF r/w
i2c_pre_hi 0x1 0xFF r/w
i2c_ctrl 0x2 0xFF r/w
i2c_rxtx 0x3 0xFF r/w
i2c_cmdstatus 0x4 0xFF r/w

eventBuffer 0x4000
EventFifoData 0x0 r
EventFifoFillLevel 0x1 r
EventFifoCSR 0x2 r/w
EventFifoFillLevelFlags 0x3 r

Event_Formatter 0x5000
Enable_Record_Data 0x0 r/w
ResetTimestampW 0x1 w
CurrentTimestampLR 0x2 r
CurrentTimestampHR 0x3 r

triggerInputs 0x6000
SerdesRstW 0x0 w
SerdesRstR 0x8 r
ThrCount0R 0x9 r
ThrCount1R 0xA r
ThrCount2R 0xB r
ThrCount3R 0xC r
ThrCount4R 0xD r
ThrCount5R 0xE r

triggerLogic 0x7000
PostVetoTriggersR 0x10 r
PreVetoTriggersR 0x11 r
InternalTriggerIntervalW 0x02 w
InternalTriggerIntervalR 0x12 r
TriggerVetoW 0x04 w
TriggerVetoR 0x14 r
ExternalTriggerVetoR 0x15 r
PulseStretchW 0x06 w
PulseStretchR 0x16 r
PulseDelayW 0x07 w
PulseDelayR 0x17 r
TriggerHoldOffW 0x08 w
TriggerHoldOffR 0x18 r
AuxTriggerCountR 0x19 r
TriggerPattern_lowW 0x0A w
TriggerPattern_lowR 0x1A r
TriggerPattern_highW 0x0B w
TriggerPattern_highR 0x1B r

logic_clocks 0x8000
LogicClocksCSR 0x0 r/w
LogicRst 0x1 w

31

is done in a manner similar to the DUTInterfaceMode. Set bit high to
allow asynchronous veto using DUT_CLK when in EUDET mode.

DUTInterfaceModeR Read the content of the DUTInterfaceMode register.

DUTInterfaceModeModifierR Read status of the DUTInterfaceMode re-
gister.

DUTMaskR Read the status of the DUTMask register.

IgnoreDUTBusyR Read the status of the IgnoreDUTBusy register.

IgnoreShutterVetoR Read the status of the IgnoreShutterVeto word (only the
last bit is meanigful).

————————

SHUTTER

ShutterStateW The LSB of this register is propagated to the DUTs as shutter
signal. This is the signal that the DUTs receive on the cont line.

PulseT0 Writing to this register will cause the firmware to generate a T0 sig-
nal.

————————

I2C_MASTER This section includes registers used to talk to the I2C bus.

i2c_pre_lo Lower part of the clock pre-scaler value. The pre-scaler is used to
reduce the clock frequency of the bus and make it compatible with the
I2C slaves on the board.

i2c_pre_hi Higher part of the clock pre-scaler value.

i2c_ctrl

i2c_rxtx

i2c_cmdstatus

————————

EVENTBUFFER

EventFifoData Returns the content of the FIFO. In the current firmware im-
plementation the memory can hold 8192 words (32-bit).

EventFifoFillLevel Read register. Returns the number of words written in
the FIFO. The lowest 14-bits are the actual data.

EventFifoCSR Read or write register. When read it returns the status of the
FIFO. Five flags are returned:

32 CHAPTER 7. IPBUS REGISTERS

• bit 0: empty. Asserted when the FIFO is empty.

• bit 1: almost empty. Asserted when one word remains in the FIFO.

• bit 2: almost full. Asserted when the FIFO can only accept one more
word before becoming full.

• bit 3: full. In the current firmware the FIFO can hold 8192 words
before filling up.

• bit 4: programmable full. This signal is asserted when the number
of words in the FIFO is greater than or equal to the assert threshold
(8181). It is de-asserted when the number of words in the FIFO is
less than the negate threshold (8180).

When any value is written to this register the FIFO is reset.

EventFifoFillLevelFlags Does not do anything? REMOVE CHECK

————————

EVENT_FORMATTER

Enable_Record_Data Read and write register. When written, CHECK
When read returns the content of the enable record word.

ResetTimestampW Write register. Writing any value to this register will
cause the firmware to produce a retest timestamp signal (high for one
clock cycle of clk_4x_logic). At the moment it does not seems to be con-
nected to anything. CHECK

CurrentTimestampLR CHECK

CurrentTimestampHR CHECK

————————

TRIGGERINPUTS

SerdesRstW Write register for the SerDes control.

• bit 0: set this bit to reset the ISERDES

• bit 1: set this bit to reset the input trigger counters

• bit 2: s_calibrate_delay

SerdesRstR Read register for the SerDes control.

ThrCount0R Read register. Returns the number of pulses above threshold
for the trigger input.

ThrCount1R Read register. Returns the number of pulses above threshold
for the trigger input.

33

ThrCount2R Read register. Returns the number of pulses above threshold
for the trigger input.

ThrCount3R Read register. Returns the number of pulses above threshold
for the trigger input.

ThrCount4R Read register. Returns the number of pulses above threshold
for the trigger input.

ThrCount5R Read register. Returns the number of pulses above threshold
for the trigger input.

————————

TRIGGERLOGIC

PostVetoTriggersR Read register. Returns the number of triggers recorded in
the TLU after the veto is applied. These are the triggers actually sent to
the DUTs.

PreVetoTriggersR Read register. Returns the number of triggers recorded in
the TLU before the veto is applied. This is used for debugging purposes.

InternalTriggerIntervalW Write the number of clock cycles to be used as
period for the internal trigger generator. If this number is smaller than 5
then the triggers are disabled. Otherwise the period is number -2.

InternalTriggerIntervalR Read the value written in InternalTriggerInter-
valW.

TriggerVetoW Write register. The value written to the LSB of this register is
used to generate a veto signal. This can be used to put switch the TLU
status: if the bit is asserted the logic will not send new triggers to the
DUTs. If the bit is reset the board will process new triggers.

TriggerVetoR Read the content of the TriggerVeto register.

ExternalTriggerVetoR Read register. Bit 0 of this register reports the veto

status (1 for veto active, 0 for no veto). The veto is active if the TLU
buffer is full or if one of the DUTs is sending a veto signal.

PulseStretchW Write the stretch word for the trigger pulses. The original
trigger pulses collected at a trigger input can be stretched by N cycles of
the 4x clock (160 MHz, 6.25 ns). N is a number between 0 and 31. The
stretched pulse is always at least as long as the original input.
The stretch values can be written in the conf file using the parameters
inX_STR (X= [0 ... 5]).
The six words for the inputs are packed in a single 32-bit word written
to this register according to the format shown in table 7.2.

34 CHAPTER 7. IPBUS REGISTERS

PulseStretchR Returns the content of the PulseStretch word.

PulseDelayW Write the delay word for the trigger pulses. The original pulse
is delayed by N clycles of the 4x clock (160 MHz, 6.25 ns). N is a number
between 0 and 31. The six words for the inputs are packed in a single
32-bit word written to this register according to the format shown in
table 7.2.
The delay values can be written in the conf file using the parameters
inX_DEL (X= [0 ... 5]).

PulseDelayR Returns the content of the PulseDelay word.

TriggerHoldOffW Does not do anything? CHECK

TriggerHoldOffR Read the previous register... CHECK

AuxTriggerCountR Auxiliary trigger counter. Used for debug.

TriggerPattern_lowW Write register for the lower 32-bits of the trigger pat-
tern. This pattern is used to select the combinations of trigger signals
that produce a valid trigger in the TLU. See section 7 for details.

TriggerPattern_lowR Read register for the lower 32-bits of the trigger pat-
tern. This pattern is used to select the combinations of trigger signals
that produce a valid trigger in the TLU. See section 7 for details.

TriggerPattern_highW Write register for the higher 32-bits of the trigger pat-
tern. This pattern is used to select the combinations of trigger signals
that produce a valid trigger in the TLU. See section 7 for details.

TriggerPattern_highR Read register for the higher 32-bits of the trigger pat-
tern. This pattern is used to select the combinations of trigger signals
that produce a valid trigger in the TLU. See section 7 for details.

————————

LOGIC_CLOCKS

LogicClocksCSR This is a read/write register. The write function is now ob-
solete and should be removed. Reading from this register returns the
status of the PLL lock: bit 0 is the locked value of the pll (1= locked).

LogicRst Writing a 1 in the LSB of this register will reset the PLL and the
clocks used by the TLU firmware. It needs to be checked for bugs.

35

Ta
bl

e
7.

2:
Pa

ck
in

g
sc

he
m

e
fo

r
va

lu
es

in
re

gi
st

er
s

us
ed

to
de

fin
e

th
e

pu
ls

e
st

re
tc

h
an

d
de

la
y.

R
eg

is
te

r
va

lu
e

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

x
x

In
pu

t5
In

pu
t4

In
pu

t3
In

pu
t2

In
pu

t1
In

pu
t0

x
x

b4
b3

b2
b1

b0
b4

b3
b2

b1
b0

b4
b3

b2
b1

b0
b4

b3
b2

b1
b0

b4
b3

b2
b1

b0
b4

b3
b2

b1
b0

36 CHAPTER 7. IPBUS REGISTERS

	Contents
	Preparation
	I/O voltage setting
	Xilinx programming cable

	TLU Hardware
	Inputs and interfaces
	Clock LEMO
	Trigger inputs
	I2C slaves

	Clock
	Input selection
	Logic clocks registers

	DUT signals
	Trigger inputs
	Trigger logic
	Event buffer

	Appendix
	Functions
	Functions

	IPBus Registers

