
European Organization for Nuclear Research
Organisation Europeenne pour la Recherche Nucleaire

wbgen2

A simple Wishbone slave core generator
Version: 20100223

Tomasz Włostowski
CERN BE-Co-HT

1



1 Introduction
wbgen2 is a Lua script for generating VHDL Wishbone slave cores from a register set descrip-
tion provided by the user. By the ”slave core” we mean a HDL entity which is connected to
Wishbone bus on one side, and on the other side it provides ports for accessing memory mapped
registers, FIFOs and RAMs, as shown on figure 1.

wb_addr_i
wb_data_i
wb_data_o
wb_cyc_i
wb_stb_i
wb_sel_i
wb_we_i
wb_ack_o

Slave core generated by wbgen2

Wishbone bus

MEMORY MAP

0x0:

0x1:

0x2:

0x100-0x200:

reg1

reg2

reg3

RAM1

reg1

reg2

reg3

RAM1

reg1_o

reg2_i

reg3_o

RAM1_addr_i

RAM1_data_i

RAM1_data_o

RAM1_we_i

Figure 1: An example of wbgen2-generated slave core

The main features of wbgen2 are listed below:

• Generation of VHDL code for slaves consisting of memory mapped registers, FIFO regis-
ters and RAMs

• Automatic minimal address space generation

• Generation of C header files containing addresses consistent with the VHDL core

• Customizable register types, with multiple access options and multiple clocking schemes

• Support for most common VHDL types

• (optional) automatic instantiation and wiring of slave core into the VHDL design

• (optional) documentation generator.

2



2 wbgen2 slave description files
In order to generate the slave core, user must provide a slave description file, which tells wbgen2
what he wants to have inside the core. Each slave description file contains a tree-like structure,
describing the peripheral’s register layout for a single Wishbone peripheral.

Slaves may contain registers, FIFO registers and RAM memories. Registers and FIFO
registers consist of fields (see figure 2), RAMs are accessible as plain, synchronous memories.

Peripheral

Register 1 Register 2 RAM 1 RAM 2 FIFO

more fields more fields

Field "bit"

(1 bit)

std_logic
Field "another_bit"

(1 bit)

std_logic
Field "somenumber"

(16 bits)

single

Figure 2: Structure of slave cores generated by wbgen2

2.1 Slave description syntax

Slave description files have C-like syntax. Each file may contain the description of a single slave
core. The description must begin with peripheral block, which contains one or more of reg,
fiforeg or ram subblocks. Each reg and fiforeg subblock must contain at least one field. Inside
each block, there is a list of attributes. The listing below shows a dummy description file layout:� �
pe r i ph e r a l {

name = "My␣ pe r i ph e r a l " ;
c_pre f ix = " per iph1 " ;
hd l_pre f ix = " per iph1 " ;
reg {

name = "My␣ r e g i s t e r " ;
p r e f i x = "myreg " ;
d e s c r i p t i o n = "A␣ longe r ␣ d e s c r i p t i o n " ;
f i e l d {

name = "My␣ f i e l d ␣1 " ;
p r e f i x = " f i e l d 1 " ;
type = type−of−the−f i e l d ; // BIT , SLV , e t c . . .

} ;
−− more f i e l d s here . . .

} ;
f i f o r e g {

name = "My␣FIFO␣ r e g i s t e r " ;
p r e f i x = "myram" ;

f i e l d { . . . } ;
} ;
ram {

name = "My␣RAM" ;
p r e f i x = "myram" ;
s i z e = 1024;

} ;
} ; 	� �

3



2.2 Common attributes

There are few attributes, which are common for all types of blocks in the description file:

name
(mandatory)

contains a short (single line) human-readable name for the peripher-
al/register/field. This name is not used directly in code generation (ex-
cept for the code comments).

c_prefix
hdl_prefix
prefix
(mandatory)

contains a short prefix for each block which is used for generation of
VHDL port/signal names and C macros. Names are generated by con-
catenating the prefixes. In the example shown above, the signal name of
field "My field 1" would be periph1_myreg_field1. The format of pre-
fix value must follow the language syntax rules and your coding style.
Note that you can provide either separate prefixes for C/HDL languages
(c_prefix, hdl_prefix) or a single prefix for both.

description
(optional)

a longer description of the block, used by the documentation generator.

Table 1: Attributes common for all description blocks

2.3 PERIPHERAL block attributes

Peripheral block is the top-level block in the description file.
Block-specific attributes:

hdl_entity
(mandatory)

name of the VHDL entity of the slave core to be generated.

Table 2: Attributes specific for peripheral blocks

2.4 REG block attributes

Reg block describes a single memory-mapped register. Each reg block must contain one or
more field blocks. Available field types are listed in table 4.
Block-specific attributes:

align = val
(optional)

Alignment value for the field address. When given, wbgen2 will align
the address of this register to the nearest multiple of val. See also figure
3.

Table 3: Attributes specific for reg blocks

Type Description
BIT VHDL single bit of type std_logic
SLV VHDL field of type std_logic_vector
SIGNED VHDL field of type signed
UNSIGNED VHDL field of type unsigned
MONOSTABLE VHDL field of type std_logic, generating a single-cycle

positive pulse upon bus write of ’1’.

4



PASS_THROUGH special field, for which wbgen2 will generate only the ad-
dress decoding logic which provides "wr" signal asserted
high for a single WB clock cycle upon each write to
the register. The written value will be fed to the cor-
responding SLV output directly from the Wishbone bus
(just wires, no registers in between).

Table 4: Possible field types for reg blocks

reg1

reg4

reg2

reg3

reg5

align=1 (default)

align=1 (default)

align=2

align=4

align=48

7

6

5

4

3

2

1

0

......

......

......

Figure 3: Register alignment

2.5 FIELD block

Field block describes a single register field. There are several types of fields, shown in table 4.
It’s the most elementary block in the design.
Block-specific attributes:

type
(mandatory)

type of the field. See table 4

size
(mandatory for: SLV,
optional for SIGNED,
UNSIGNED)

size of the field in bits. For SIGNED and UNSIGNED types it’s
interchangeable with range attribute.

range = {min,max}
(optional for SIGNED,
UNSIGNED)

minimal and maximal field value. When provided, wbgen2 will
automatically calculate the necessary number of bits.

5



access_bus
access_dev
(optional)

field access flags. access_bus defines how the field can be ac-
cessed from the Wishbone bus, access_dev defines how the field
can be modified by the HDL entity in which the slave core is instan-
tiated. Access flags can have one of these values: READ_ONLY,
WRITE_ONLY, READ_WRITE. For the possible access combi-
nations refer to table ??.
The default value is READ_WRITE (from the bus) and
READ_ONLY (from the device).

access
(optional)

can be used instead of access_bus and access_dev to define
access rights. See table ??.

align = num
(optional)

when given, the bit offset at which field will be allocated, will
be aligned to integer multiple of num. Default value is 1 (no
alignment).

clock
(optional)

can be used to provide a clock port name if the field needs to oper-
ate in clock domain other than Wishbone bus clock. wbgen2 will
automatically provide the necessary synchronization logic. Clock
names are automatically appended to slave core entity port list. If
no clock attribute is provided, wbgen2 defaults to Wishbone bus
clock.

load
(optional for RW/RW
fields)

this attribute is applicable only to RW/RW-accessed fields (e.g.
the fields which are writable both from the bus and the device).
There are two possible values, indicating where the field register
will be physically placed (see figure ??):
LOAD_EXT - the field register is placed outside the slave core.
Upon bus write operation, slave outputs the new value to the out-
put port and asserts the "load" signal for a single clock cycle. The
device has to handle these signals and update the value of the reg-
ister respectively.
LOAD_INT - the field register is placed inside the slave core.
When the device wants to update it’s value, it passes it to certain
input port and asserts the load signal high. not implemented yet.

Table 5: Attributes specific for field blocks

6



3 Registers
wbgen2 supports various types of memory mapped I/O registers and fields:

• SLV, SIGNED, UNSIGNED and BIT standard registers

• Bus-synchronous (operating with the same clock as the WB bus) or asynchronous (using
externally supplied clock). wbgen2 automatically provides all necessary synchronization
logic.

• MONOSTABLE registers which generate positive pulse upon write of ’1’. ’

• PASS_THROUGH registers

• Different access configurations

• Single register can contain fields of different types, clocks and access.

Figures 4 and ?? show all possible register field types.

slave core slave core

slave core

type:
clocking:
access:
cycle:

BIT/SLV/SIGNED/UNSIGNED
synchronous

RW/RO
2 clocks

type:
clocking:
access:
cycle:

BIT/SLV/SIGNED/UNSIGNED
asynchronous

RW/RO
3 clocks (BIT), 6 clocks (rest)

type:
clocking:
access:
cycle:

BIT/SLV/SIGNED/UNSIGNED
asynchronous

RO/WO
3 clocks(BIT), 6 clocks (rest)

reg_field_o()

async_clk_i

async_clk_i

async_clk_i

reg_field_o()

reg_field_i()

read read

read

write write
sync
logic

sync
logic

slave core

type:
clocking:
access:
cycle:

BIT/SLV/SIGNED/UNSIGNED
synchronous

RO/WO
2 clocks

reg_field_i()

read

address
decoder

slave core

type:
clocking:
access: LOAD_EXT
cycle:

BIT/SLV/SIGNED/UNSIGNED
synchronous

RW/RW,
2 clocks

reg_field_o()

reg_field_i()read

address
decoderwrite

D

Q

EN
when
written

reg_field_load_o

slave core

type:
clocking:
access: LOAD_EXT
cycle:

BIT/SLV/SIGNED/UNSIGNED
asynchronous

RW/RW,
6 clocks

reg_field_o()

reg_field_i()read

address
decoderwrite

D

Q

EN
when
written

reg_field_load_o

sync
logic

Figure 4: wbgen2 register type cheatsheet - standard registers

7


	Introduction
	wbgen2 slave description files
	Slave description syntax
	Common attributes
	PERIPHERAL block attributes
	REG block attributes
	FIELD block

	Registers

