smaller signal/ variable names

after_a_var_rst_nFIP_ON_fd_ON_rston_ON

smaller signal/ variable names

Remove Synplify warnings

Remove Synplify specific attributes

Remove comments for entity/ architecture declarations, libraries?

Better signal names: rstpon_i, rst_i; either LGTH or LENGTH!

Solve messss with generics and constants; g_ for all generics, c_ for all constants

Coherent architecture names (behavioral, rtl)

Signal declaration in a logic way! signal names not consistent in different units

Reduce the number of signals, they are really messing up the code:-s

Grouping ports by interface or direction?

manchester encoder should be a function

Avoid using complex data types in entity ports (var, counter)

State machine outputs style :-s

wf_incr_counter

nfip_rst_iand reinit_counter_i do exactly the same thing. Remove nfip_rst_i.

wf_wb_controller

Check that wb_we ="0" to ack a read transaction!!

\

7

“reading/writing from an invalid address will hang the bus by not ack-ing the transaction. Is it
the expected behavior? “

\

wf_cons_frame_validator

rReplace

With

if rx_fss_crc_fes manch ok_p i = 'l' then -- checking the RP_DAT.Data.Length
-— byte, when the FEI arriwves.

if unsigned{rx_byte_index_i } = {(unsigned{cons_lgth_byte_i) + 5} then
z_cons_lgth byte ok <= '1'; -- r¥_byte_index starts counting
—— from 0 and apart from the
-— user-data bytes, also counts the
el=se -- Control, PDU_TYPE, Length,
-- the Z CRC and the FE3 bytes

3_cons_lgth byte ok <= '0';
end if;
if rx_fzs_crc_fes manch ok_p i = 'l' or crc_manch wrong_p_i = '}' then -- checking the

-- RF_DAT.Data. Length byte,

-- when the FEZ arriwves.
if unsimed{rx_byte_index_i) = {(unzigned{cons_lgth bwyte_i)} + 5) then
g _cons_lgth byte ok <= '1'; -- tx_byte_ index starts counting
—-- from 0 and apart from the
-- user-data bytes, also counts the
el=e -- Control, FDU_TYFE, Length,
—-- the 2 CRC and the FE3 bytes
s_cons_lgth_byte_ok <= '0';
end if;

Remove checking of Ctrl and PDU_TYPE bytes; check them directly at reception?

wf_engine_control

Receiving 2 or more consecutive ID_DATs:

-

nFIP internal

reset_deserializer

wrong CRC or wrong manch. Or > 8 bytes no FES

FSS_received_p

byte received_p

byte_received

DA

byte_received

CRC FES manch OK!

start_ producer

last byte p

produce

consume

FES detected

> 130 bytes received

reset_deserializer

wf_

engine_control

-

reset_deserializer

nFIP internal

wrong CRC or wrong manch. Or > 8 bytes no FES

FSS_received_p

byte received_p

produce

start_ producer

SS_received

byte_received

D DA

byte_received

CRC FES manch OK!

var_o

last byte p

FES detected

> 130 bytes received

reset_deserializer

wf_

engine_control

-

reset_deserializer

nFIP internal

wrong CRC or wrong manch. Or > 8 bytes no FES

FSS_received_p

byte received_p

produce

start_producer

SS_received

byte_received

D DA

byte_received

CRC FES manch OK!

var_o

last byte p

FES detected

> 130 bytes received

reset_deserializer

wf_

engine_control

wf_engine_control

Receiving 2 or more consecutive ID_DATs:

Remove “for loops” for var identification!

Check for FES (not only byte_ready_p) in all the states!

Timeouts relying only to system clock!

wf_rx_deserializer

7

“POSSIBLE SERIOUS BUG: The bit-window locking seems to be using the first transition in the

RXD signal to synchronize the counter in rx_tx_osc. A small glitch in the signal just before the
preamble could cause a valid frame to be dropped because of an invalid data window. RX clock

should be locked *after* receiving the preamble, not before - this is the purpose of preambles

i’n all data links.”

reset
> wf_tx_rx_osc

wf_rx_deserializer : PRE detection

nFIP internal or
engine_ctrl

r_edge inside the
pxpected window

Switch_to
Deglitched

wf_rx_deserializer

4)
“POSSIBLE SERIOUS BUG: The bit-window locking seems to be using the first transition in the

RXD signal to synchronize the counter in rx_tx_osc. A small glitch in the signal just before the
preamble could cause a valid frame to be dropped because of an invalid data window. RX clock
should be locked *after* receiving the preamble, not before - this is the purpose of preambles

in all data links.”
_)

Condition to return to idle in switch_to_deglitched state!!

4)
“I wonder if we should have an additional condition which takes this state machine to Idle,

namely the wfip link being inactive, i.e. maintaining a constant level for a long (to be
defined)time. This would ensure the state machine is always sitting in the Idle state before the

beginning of a frame. With the current implementation, it might well be the case, but there are

inanyscenarios to analyze and we risk forgetting something.”

wf_tx_rx_osc

4 N
“When the first falling edge arrives (or the following significant edges) s_rx_counter is reset
and start counting. And the significant edge window is valid as long as s_rx_counter is
smaller than s_jitter. It means that just after an edge if another comes before
s_rx_counter = s_jitter, the edge is valid.”

-- regarding significant edges:
-- looking for a significant edge inside the corresponding windowr
if (z_rxd signif edge_window = '1'} and {rxd edge p i = '1'} then
g_rx_manch clk <= not s_rx¥_manch clk; -- inwersion of rx_manch clk
g_signif edge_found <= 'l'; -- indication that the edge was found
g_adjac_bits_edge found <= '0';
-- 1f a zignificant edge iz not f£ound where expected (code wiolation), the rx_manch clk
-- iz inwerted right after the end of the simif edge_windaomr.
elsif {5 _sigmif edge found = '0'} and {s_rx_counter = s_Jjitter) then
g_rx_manch clk <= not 5_rx_manch clk;
g_adjac_bits_edge_found <= '0O'; -- re-initialization before the
-- next cycle
\ J

wf_tx_rx_osc

r
“When the first falling edge arrives (or the following significant edges) s_rx_counter is reset

and start counting. And the significant edge window is valid as long as s_rx_counter is
smaller than s_jitter. It means that just after an edge if another comes before

S_rx_counter = s_jitter, the edge is valid.”

-— regarding significant edges:

-- looking for a significant edge inside the corresponding windo
if (z_rxd signif edge window = '1'} and (rxd edge p i = '1'}) andT{s_signif_EdgE_fDund = '0'y] then

g_rx_manch clk <= not 5_rx_manch clk; -- inwersion of rx_manch clk
g_signif edge_found <= 'l'; -- indication that the edge was found
g_adjac_bits_edge found <= '0';

-- 1f a zignificant edge iz not found where expected (code wiolation), the rx_manch clk
-- iz inwerted right after the end of the sigmif edge_windaomr.

elsif (5 _sigmif edge found = '0'} and {5_rx{ counter = 5_jitter) then
g_rx_manch clk <= not 5_rx_manch clk;
g_adjac_bits_edge found <= '0'; -- re-initiali=ation before the

-- next cycle

wf_tx_rx_osc

Optimizations!

\

(N
“When the first falling edge arrives (or the following significant edges) s_rx_counter is reset
and start counting. And the significant edge window is valid as long as s_rx_counter is
smaller than s_jitter. It means that just after an edge if another comes before
s_rx_counter = s_jitter, the edge is valid.”

-— regarding significant edges:
-- looking for a significant edge inside the corresponding windo
if (z_rxd signif edge window = '1'} and (rxd edge p i = '1'}) andT{s_signif_edge_fuund = '0'y] then
g_rx_manch clk <= not 5_rx_manch clk; -- inwersion of rx_manch clk
g_signif edge_found <= 'l'; -- indication that the edge was found
g_adjac_bits_edge found <= '0';
-- 1f a zignificant edge iz not found where expected (code wiolation), the rx_manch clk
-- iz inwerted right after the end of the sigmif edge_windaomr.
elsif (5 _sigmif edge found = '0'} and {5_rx{ counter = 5_jitter) then
g_rx_manch clk <= not 5_rx_manch clk;
g_adjac_bits_edge found <= '0'; -- re-initiali=ation before the
-- next cycle

\ J

(N

wf_crc

s_g_check_mask not in sensitivity list!!

Replace “xor” with “if”!

“avoid driving outputs with comb logic unless it's really justified. Here you can move the CRC A
comparison to the sequential process above”
—it’s clocked in the wf_rx_deserializer

“crc_ok_p is not registered to reduce the number of flip flops, remember this is a rad-hard
design”

2>TMR?

\

wf_inputs_synchronizer

Same style for synchronization!

Clarify FD_RXCDN & maybe remove FD_RXD filtering from here
-> finally, remove completely use of FD_RXCDN to make nanoFIP independent of Alstom’s
FIELDRIVE

Robust edge detection with 7 flip-flops!

Inhibit detection for a while after a detected edge!

Remove synchronization of DAT | in slone mode

Remove synchronization of WorldFIP settings

TMR & Synchronization: TMR everything

We know all inputs are well registered. Are all outputs registered as well?

,(4/most!

Wf_model constr_decoder:

—-=! [dtodo

-» select_id o not the output of a dff:-s

[Outcome — Summary of Basic changes

o Direct deglitching of FD_RXD (also the PRE) independent of the wf_rx_osc

o Timeouts for all state machines

