Brandon Hamilton and Alan Langman.

Rhino

Reconfigurable Hardware Interface for computation and radio.
Overview.

- Who are we?
- Objectives and key requirements
- Rhino Hardware
- Rhino Embedded
- Rhino Applications
Acknowledgements.

- Simon Scott and Hayden So
- Students
- CASPER
- University of Cape Town
- MeerKAT project (SKA South Africa)
- SANDF Ledger Project
- OHWR
- Xilinx
Rhino.
Brandon Hamilton and Alan Langman.

Cape Town, South Africa.
Objective.

To develop an accessible reconfigurable computing platform for software-defined radio teaching and research.
Rhino.
Brandon Hamilton and Alan Langman.

Back to basics.
Rhino.
Brandon Hamilton and Alan Langman.

Back to basics.
Rhino.
Brandon Hamilton and Alan Langman.

Back to basics.
Requirements.

- Low cost hardware and open platform (TAPR/OHL)
- Open Source software (Tools/DSP)
- Easy to learn and use
- Compatible with existing hardware and software (GNU radio)
- Target software-defined radio apps
Reconfigurable devices can be configured to provide the best match for the computational requirements at that specific time, giving much better area – speed – power performance.
Open Hardware solution.
Rhino Architecture.

FPGA
Spartan-6
XC6SLX150T

FPGA Processor Bus

ARM Processor
ARM Core
Texas Instruments AM3517

Micron
Rhino Architecture.

- FPGA
- Spartan-6 XC6SLX150T

- Xilinx XC6SLX150T
 - 676-pin package
 - 150,000 logic cells
 - 180 DSP48A1 slices (up to 300MHz)
 - 8 GTP transceivers
 - 4 integrated DDR3 Memory Controller Blocks
Rhino Architecture.

- **Micron DDR3-1066**
 - 512MB capacity
 - 25.6Gbps total bandwidth
- **Spartan-6 XC6SLX150T**
- ARM Core
- Texas Instruments AM3517
Rhino Architecture.

FPGA

FPGA Processor Bus

ARM Processor
ARM Core
Texas Instruments AM3517

FMC connectors for ADC and DAC cards
Supports 2 cards
Rhino Architecture.

- FPGA: Spartan-6 XC6SLX150T
- Processor: ARM Core
- Texas Instruments AM3517
- Processor Bus
- 2 CX4 10Gbps Ethernet connectors
- Supports copper-to-fibre adaptors
Texas Instruments AM3517ZCN
491-pin package
600MHz ARM cortex-A8 core
Many integrated peripherals (USB, Ethernet, HD video output)
Rhino Architecture.

- **FPGA**
 - Spartan-6
 - XC6SLX150T

- **Processor Bus**

- **ARM Core**

- **Memory**
 - 256MB NAND flash memory

- **Storage**
 - Storage for bootloader and OS

Rhino
Brandon Hamilton and Alan Langman.
Rhino Architecture.

FPGA

Spartan-6
XC6SLX150T

ARM boots from USB drive or SD card
2 USB host ports
JTAG over USB

ARM core
Texas Instruments AM3517
Rhino Architecture.

FPGA

Spartan-6
XC6SLX150T

100Mbps Ethernet
Supports IEEE1588
Precision Time Protocol
Sync board within 10ns
Rhino Architecture.

FPGA
Spartan-6
XC6SLX150T

FPGA Processor Bus
16-bit data bus
1.3 Gbps

Texas Instruments AM3517
FMC.

- Well-specified standard
 - Electrical interfaces, mechanical and thermal requirements
- Dedicated I2C lines for control
- Lots of commercial off-the-shelf ADC/DAC
- FMC-to-ZDOK+ adaptor (CASPER cards)
- FMC-to-Ettus radio board controllers
Commercially Available.
CERN FMC ADC 100M 14b 4cha.

- 4 Channel ADC
- 100 MSPS
- OHWR
Rhino.
Brandon Hamilton and Alan Langman.

Model.
Model (with Enclosure).

- FMC-to-ZDOK+ adaptor
- ZDOK ADC card
- FMC ADC/DAC card
Rhino.
Brandon Hamilton and Alan Langman.

Manufactured.
Making Rhino Comfortable.
BORPH.

- Berkeley Operating system for ReProgrammable Hardware

OS for reconfigurable computers
- Treats reconfigurable hardware as computational resources

UNIX interface to HW designs
- Familiar to SW and HW engineers
- Design language independent
BORPH.

- Abstraction layer
 - Portability
 - Usability
- UNIX process model
 - HW becomes an active entity
- Focus on application, rather than low level implementation details
Rhino.
Brandon Hamilton and Alan Langman.

BORPH.

SW Process
CPU

HW Process
FPGA

BORPH
Device configuration.

BORPH Object File (BOF)
- HW executable
- Analogous to SW ELF executable

```bash
1:bash$ ./my_design.bof
system("./my_design.bof")
```
Device I/O.

- Virtual File System (IOREG)
 - Interface to the running HW process
 - Access to device registers
 - Generic (Language independent)

```bash
1:bash$ cp /proc/1337/hw/ioreg/MYREG ~/
memfile = fopen("/proc/1337/hw/ioreg/MYREG", "r");
fread(buf, 4, 1, memfile);
```
Portability.

- Platform specific functions
 - Configuration
 - Unconfiguration
 - Read from device
 - Write to device

Linux Kernel (3.1)

BORPH

- BOF Binary format
- Proc filesystem extension
- Exec threads

Platform Specific

HWRTYPE_RHINO
Rhino.
Brandon Hamilton and Alan Langman.

Remote Development.
Gateware Infrastructure.

- Support open standards (wishbone)
- Common architecture with open hardware
- Support for
 - Etherbone (ethernet to wishbone)
 - ARMbone (GPMC to wishbone, ICAP)
 - Wishbone serializer core (CX4)
 - DSP Pipeline wishbone dataflow mode
Rhino Radar.
Rhino Radar Integrated.
Rhino.
Brandon Hamilton and Alan Langman.

Radio Astronomy.
Conclusions.

- Motivation and history of Rhino
- Open Hardware!
- Approximately 1 year from concept to pre-production unit
- Available from Digicom ($2000)
- Easy to use interface for user
- Grow the user community
Thanks.

www.rhinoplatform.org