LNLS’s experience with Open Hardware
Open Hardware Workshop 2013, San Francisco

Speaker: Daniel Tavares

On behalf of the Sirius RF Beam Position Monitor electronics development team: Rafael Baron, João Brito, Fernando Cardoso, Sérgio Marques, Lucas Russo, Daniel Tavares

October 6, 2013
Outline

- Introduction
- Current status
- Benefits of an open-source approach
- Difficulties found
- Possibilities of collaboration
- Conclusion
Introduction

Campinas, State of São Paulo, Brazil
Introduction

Campinas, State of São Paulo, Brazil

First beam: mid-2016

Sirius

LNLS UVX storage ring
1.37 GeV 2nd generation light source
Operating since 1997
Introduction

September 2013
Current status

- 4 open hardware boards:
 1. Sirius BPM RF Front-End
 2. AMC FMC Carrier
 3. FMC ADC 4-channel 16-bit 130 MS/s
 4. FMC ADC 4-channel 16-bit 250 MS/s

- HDL and low-level software:
 - PCIe infrastructure (WB master, Linux device driver, C/C++ API)
 - A modular HAL: FMC Configuration Software (FCS)
 - Wishbone local bus infrastructure

- New round of boards: December’13

- CERN Open Hardware Licence + GNU General Public License (GPL)

- 1st version prototypes produced

- Come to see the talk Development of an Open-Source Hardware Platform for Sirius BPM and Orbit Feedback (WECOCB07) on this Wednesday (the 9th), Hardware Session! 😊
Current status (Sirius BPM RF Front-End)

HSWA2-30DR
P1dB = 30 dBm
Isolation = > 60 dB
IL = 0.7 dB

Calibration Tone

From BPM buttons

Designed by LNLS
Current status (Sirius BPM RF Front-End)
Current status (AMC FMC Carrier – AFC)

- FMC slot 1 (HPC)
 - 32-bit SDRAM DDR3 (256 MB or 2 GB)
 - FPGA
 - Xilinx Artix-7
 - 200T FFG1156
 - 8x MGT
 - Oscillators + DACs
 - Configuration Flash
 - IPMI Controller
- FMC slot 2 (HPC)
 - PCIe x4
 - 2x GbE
 - 8x M-LVDS
 - 32 MB NOR Flash
 - EEPROM / ID
- Standalone Power input
- Clock Crossbar

LNLS’s experience with Open Hardware
Daniel Tavares - OHW 2013, San Francisco
Current status (AMC FMC Carrier – AFC)

Specified by LNLS
Designed by WUT
Current status (FMC ADC)
Current status (FMC ADC)

LTC2208 (130MS/s) – LNLS design

ISLA216P25 (250 MS/s) – WUT design

Common shielding/heatsink, front panel and connectors
Current status

- Some open-source code, tools and concepts in use:
 - Open Hardware Repository
 - Hdlmake
 - WB slave generator
 - GSI-patched LM32
 - Wishbone crossbar switch
 - PCIe HDL
 - PCIe Linux device driver
 - IPMI code for AFC’s MMC
 - Self Describing Bus (SDB)

- Planning to use:
 - Libre Filter Design and Analysis (FDA) Tool
 - Etherbone
 - White Rabbit
 - ZIO
 - KICAD
 - BNL’s Synchronous Device Interface (SDI)
Benefits of open-source

- Learning process
- Valuable inputs from:
 - experienced people
 - creative people
 - visionary people
 - curious people
 - hard-working people
 - the unexpected
- Design reuse largely employed
- Cost effective
- When successfully employed, naturally claims for:
 - good interfaces
 - good documentation
Difficulties found

- The start
- Diversity of code and support
- Local companies
- Funding
- Legal aspects?
Possibilities of collaboration

1. **Open-source MicroTCA platform**
 - CPU
 - MCH
 - Timing (distributed DDS over White Rabbit)
 - Software (IPMI, control system interface)

2. **A solution for multiple input/multiple output (MIMO) control with update rates > 100 kS/s**
 - Ultra low-latency data distribution
 - Beam synchronous
 - Fault-tolerant
 - Universal low-cost sensor/actuator node with SFP/MGT/FPGA interface
 - HDL for MIMO state-space feedback controller
 - Simulation tools
Possibilities of collaboration

1. **Open-source MicroTCA platform**
 - CPU
 - MCH
 - Timing (distributed DDS over White Rabbit)
 - Software (IPMI, control system interface)

2. **A solution for multiple input/multiple output (MIMO) control with update rates > 100 kS/s**
 - Ultra low-latency data distribution
 - Beam synchronous
 - Fault-tolerant
 - Universal low-cost sensor/actuator node with SFP/MGT/FPGA interface
 - HDL for MIMO state-space feedback controller
 - Simulation tools

Main drivers at this front now: Warsaw University of Technology and Creotech

Lnls’s experience with Open Hardware
Daniel Tavares - OHW 2013, San Francisco
Conclusion

- Work is under way to build open-source BPM and orbit feedback systems for synchrotron light sources. The platform is generic and can be used for other purposes.

- Challenges exist and must be overcome.

- Fronts of possible collaboration for building open-source systems: MicroTCA and low-latency MIMO feedback.

- Massive adherence of the accelerator’s community to the open-source approach is desired and very much expected.
Thank you!

- Designs and codes hosted at:
 - http://www.ohwr.org/projects/bpm
 - http://www.ohwr.org/projects/bpm-rffe
 - http://www.ohwr.org/projects/bpm-sw
 - http://www.ohwr.org/projects/afc
 - http://www.ohwr.org/projects/fmc-adc-130m-16b-4cha
 - http://www.ohwr.org/projects/fmc-adc-250m-16b-4cha