
LatticeMico32 Processor
Reference Manual

Lattice Semiconductor Corporation
5555 NE Moore Court
Hillsboro, OR 97124
(503) 268-8000

July 2009

LatticeMico32 Processor Reference Manual ii

Copyright
Copyright © 2008 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-
readable form without prior written consent from Lattice Semiconductor
Corporation.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation
(logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme
Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL,
GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock,
ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2,
ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH,
ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer,
PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST,
SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The
Simple Machine for Complex Design, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of
Lattice Semiconductor Corporation or its subsidiaries in the United States
and/or other countries. ISP, Bringing the Best Together, and More of the Best
are service marks of Lattice Semiconductor Corporation.

HyperTransport is a licensed trademark of the HyperTransport Technology
Consortium in the U.S. and other jurisdictions.

Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT
IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY
KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS,
MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL
PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILL LATTICE SEMICONDUCTOR CORPORATION (LSC) OR ITS
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL,
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED
IN THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS
PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or
to the products described herein, at any time without notice. LSC makes no
commitment to update this documentation. LSC reserves the right to
discontinue any product or service without notice and assumes no obligation

LatticeMico32 Processor Reference Manual iii

to correct any errors contained herein or to advise any user of this document
of any correction if such be made. LSC recommends its customers obtain the
latest version of the relevant information to establish, before ordering, that the
information being relied upon is current.

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

LatticeMico32 Processor Reference Manual iv

LatticeMico32 Processor Reference Manual v

Contents

Chapter 1 LatticeMico32 Processor and Systems 1

Chapter 2 Programmer’s Model 5
Pipeline Architecture 5
Data Types 6
Register Architecture 7

General-Purpose Registers 7
Control and Status Registers 9

Memory Architecture 14
Address Space 14
Endianness 14
Address Alignment 15
Stack Layout 15
Caches 16
Inline Memories 18

Exceptions 20
Exception Processing 21
Exception Handlers 22
Nested Exceptions 26
Remapping the Exception Table 26
Reset Summary 26
Using Breakpoints 27
Using Watchpoints 27

Debug Architecture 28
DC – Debug Control 29
DEBA – Debug Exception Base Address 29
JTX – JTAG UART Transmit Register 29
JRX – JTAG UART Receive Register 30
BPn – Breakpoint 30
WPn – Watchpoint 31

Instruction Set Categories 31

Contents

LatticeMico32 Processor Reference Manual vi

Arithmetic 31
Logic 31
Comparison 32
Shift 32
Data Transfer 32
Program Flow Control 32

Chapter 3 Configuring the LatticeMico32 Processor 35
Configuration Options 35
EBR Use 38

Chapter 4 WISHBONE Interconnect Architecture 39
Introduction to WISHBONE Interconnect 39
WISHBONE Registered Feedback Mode 40

CTI_IO() 40
BTE_IO() 41

Component Signals 42
Master Port and Signal Descriptions 43
Slave Port and Signal Descriptions 44

Arbitration Schemes 46
Shared-Bus Arbitration 46
Slave-Side Arbitration 46

Chapter 5 Instruction Set 49
Instruction Formats 49
Opcode Look-Up Table 50
Pseudo-Instructions 51
Instruction Descriptions 51

add 52
addi 52
and 53
andhi 53
andi 54
b 54
be 55
bg 55
bge 56
bgeu 56
bgu 57
bi 57
bne 58
break 58
bret 59
call 59
calli 60
cmpe 60
cmpei 61
cmpg 61
cmpgi 62
cmpge 62
cmpgei 63

Contents

LatticeMico32 Processor Reference Manual vii

cmpgeu 63
cmpgeui 64
cmpgu 64
cmpgui 65
cmpne 65
cmpnei 66
divu 66
eret 67
lb 67
lbu 68
lh 68
lhu 69
lw 69
modu 70
mul 71
muli 71
mv 72
mvhi 72
nor 73
nori 73
not 74
or 74
ori 75
orhi 75
rcsr 76
ret 76
sb 76
scall 77
sextb 77
sexth 78
sh 79
sl 79
sli 80
sr 80
sri 81
sru 81
srui 82
sub 82
sw 83
wcsr 83
xnor 84
xnori 84
xor 85
xori 85

Index 87

Contents

LatticeMico32 Processor Reference Manual viii

LatticeMico32 Processor Reference Manual 1

1
LatticeMico32 Processor
and Systems

As systems become more complex, there are a growing number of L_2 and
L_3 protocols that continue to burden a local host processor. These tend to
incrementally add processing requirements to the local processor, starving
other critical functions of processor machine cycles. To alleviate the local host
processor’s processing requirements, embedded processors are being
utilized to support the main processor in a distributed processing architecture.
These embedded processors offer localized control, OA&M functionality, and
statistics gathering and processing features, thereby saving the host
processor many unnecessary clock cycles, which can be used for higher-level
functions.

A soft processor provides added flexibility in the implementation of your
design. Functionality that can be implemented in software rather than
hardware allows much greater freedom in terms of the types of changes that
can be made. With software-based processing, it is possible for the hardware
logic to remain stable and functional upgrades can be made through software
modification. Additionally, it is much quicker and simpler to implement
functionality in software than it is to design it in hardware, leading to a
reduced time to market.

The LatticeMico32™ is a configurable 32-bit soft processor core for Lattice
Field Programmable Gate Array (FPGA) devices. By combining a 32-bit wide
instruction set with 32 general-purpose registers, the LatticeMico32 provides
the performance and flexibility suitable for a wide variety of markets, including
communications, consumer, computer, medical, industrial, and automotive.
With separate instruction and data buses, this Harvard architecture processor
allows for single-cycle instruction execution as the instruction and data
memories can be accessed simultaneously. Additionally, the LatticeMico32
uses a Reduced Instruction Set Computer (RISC) architecture, thereby
providing a simpler instruction set and faster performance. As a result, the
processor core consumes minimal device resources, while maintaining the

LatticeMico32 Processor and Systems

LatticeMico32 Processor Reference Manual 2

performance required for a broad application set. Some of the key features of
this 32-bit processor include:

RISC architecture

32-bit data path

32-bit instructions

32 general-purpose registers

Up to 32 external interrupts

Optional instruction cache

Optional data cache

Dual WISHBONE memory interfaces (instruction and data)

Figure 1 shows a block diagram of the LatticeMico32 processor core.

To accelerate the development of processor systems, several optional
peripheral components are available with the LatticeMico32 processor.
Specifically, these components are connected to the processor through a
WISHBONE bus interface, a royalty-free, public-domain specification. By
using this open source bus interface, you can incorporate your own

Figure 1: LatticeMico32 Block Diagram

LatticeMico32 Processor and Systems

LatticeMico32 Processor Reference Manual 3

WISHBONE components into your embedded designs. The components
include:

Memory controllers

Asynchronous SRAM

Double data rate (DDR)

On-chip

Input/output (I/O) ports

32-bit timer

Direct memory access (DMA) controller

General-purpose I/O (GPIO)

I2C master controller

Serial peripheral interface (SPI)

Universal asynchronous receiver transmitter (UART)

Figure 2 shows a complete embedded system using the LatticeMico32
processor along with several components.

This manual describes the architecture of the LatticeMico32 processor. It
includes information on configuration options, pipeline architecture, register
architecture, memory architecture, debug architecture, and the instruction set.
It is intended to be used as a reference when you design processors for use
on supported Lattice Semiconductor field programmable gate arrays
(FPGAs).

Figure 2: LatticeMico32 Processor Embedded System

LatticeMico32 Processor and Systems

LatticeMico32 Processor Reference Manual 4

LatticeMico32 Processor Reference Manual 5

2
Programmer’s Model

This chapter describes the pipeline architecture of the LatticeMico32
processor.

Pipeline Architecture
The LatticeMico32 processor uses a 32-bit, 6-stage pipeline, as shown in
Figure 3 on page 6. It is fully bypassed and interlocked. The bypass logic is
responsible for forwarding results back through the pipeline, allowing most
instructions to be effectively executed in a single cycle. The interlock is
responsible for detecting read-after-write hazards and stalling the pipeline
until the hazard has been resolved. This avoids the need to insert nop
directives between dependent instructions, keeping code size to a minimum,
as well as simplifying assembler-level programming.

The six pipeline stages are:

Address – The address of the instruction to execute is calculated and sent
to the instruction cache.

Fetch – The instruction is read from memory.

Decode – The instruction is decoded, and operands are either fetched
from the register file or bypassed from the pipeline. PC-relative branches
are predicted by a static branch predictor.

Execute – The operation specified by the instruction is performed. For
simple instructions such as addition or a logical operation, execution
finishes in this stage, and the result is made available for bypassing.

Memory – For more complicated instructions such as loads, stores,
multiplies, or shifts, a second execution stage is required.

Writeback – Results produced by the instructions are written back to the
register file

Programmer’s Model Data Types

LatticeMico32 Processor Reference Manual 6

Data Types

The LatticeMico32 processor supports the data types listed in Table 1.

Figure 3: LatticeMico32 Pipeline

Table 1: Data Types

Type Range Bits Encoding C Compiler Type

Unsigned byte [0, 28-1] 8 Binary Unsigned
character

Signed byte [-27, 27-1] 8 Two's complement Character

Unsigned half-word [0, 216-1] 16 Binary Unsigned short

Signed half-word [-215, 215-1] 16 Two's complement Short

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 7

In addition to the above, the extended data types in Table 2 can be emulated
through a compiler.

Register Architecture
This section describes the register architecture of the LatticeMico32
processor.

General-Purpose Registers
The LatticeMico32 features the following 32-bit registers:

By convention, register 0 (r0) must always hold the value 0, and this is
required for correct operation by both the LatticeMico32 assembler and
the C compiler. On power-up, the value of 0 in r0 is not hardwired, so you
must initialize it to load r0 with the 0 value.

Registers 1 through 28 are truly general purpose and can be used as the
source or destination register for any instruction. After reset, the values in
all of these registers are undefined.

Register 29 (ra) is used by the call instruction to save the return address
but is otherwise general purpose.

Register 30 (ea) is used to save the value of the Program Counter (PC)
when an exception occurs, so it should not be used by user-level
programs.

Register 31 (ba) saves the value of the Program Counter (PC) when a
breakpoint or watchpoint exception occurs, so it should not be used by
user-level programs.

Unsigned word [0, 232-1] 32 Binary Unsigned int/
unsigned long

Signed word [-231, 231-1] 32 Two's complement Int/long

Table 2: Extended Data Types

Data Type Range Bits Encoding C Compiler Type

Unsigned double-word [0, 264-1] 64 Binary Unsigned long long

Signed double-word [-263, 263-1] 64 Two's complement Long long

Single-precision real [1.1754e-38,
3.4028e+38]

32 IEEE 754 Float

Double-precision real [2.2250e-308,
1.7976e+308]

64 IEEE 754 Double

Table 1: Data Types

Type Range Bits Encoding C Compiler Type

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 8

After reset, the values in all of the above 32-bit registers are undefined. To
ensure that register 0 contains 0, the first instruction executed after reset
should be xor r0, r0, r0.

Table 3 lists the general-purpose registers and specifies their use by the C
compiler. In this table, the callee is the function called by the caller function.

Table 3: General-Purpose Registers

Register Name Function Saver

r0 Holds the value zero

r1 General-purpose/argument 0/return value 0 Caller

r2 General-purpose/argument 1/return value 1 Caller

r3 General-purpose/argument 2 Caller

r4 General-purpose/argument 3 Caller

r5 General-purpose/argument 4 Caller

r6 General-purpose/argument 5 Caller

r7 General-purpose/argument 6 Caller

r8 General-purpose/argument 7 Caller

r9 General-purpose Caller

r10 General-purpose Caller

r11 General-purpose Callee

r12 General-purpose Callee

r13 General-purpose Callee

r14 General-purpose Callee

r15 General-purpose Callee

r16 General-purpose Callee

r17 General-purpose Callee

r18 General-purpose Callee

r19 General-purpose Callee

r20 General-purpose Callee

r21 General-purpose Callee

r22 General-purpose Callee

r23 General-purpose Callee

r24 General-purpose Callee

r25 General-purpose Callee

r26/gp General-purpose/global pointer Callee

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 9

Control and Status Registers
Table 4 shows all of the names of the control and status registers (CSR),
whether the register can be read from or written to, and the index used when
accessing the register. Some of the registers are optional, depending on the
configuration of the processor (see “Configuring the LatticeMico32 Processor”
on page 35). All signal levels are active high.

PC – Program Counter
The PC CSR is a 32-bit register that contains the address of the instruction
currently being executed. Because all instructions are four bytes wide, the two
least significant bits of the PC are always zero. After reset, the value of the PC
CSR is h00000000.

r27/fp General-purpose/frame pointer Callee

r28/sp Stack pointer Callee

r29/ra General-purpose/return address Caller

r30/ea Exception address

r31/ba Breakpoint address

Table 4: Control and Status Registers

Name Access Index Optional Description

PC No Program counter

IE R/W 0x0 Yes Interrupt enable

EID R — No LM32 revision number. EID is not
accessible via Assembly, since it does not
have an index.

IM R/W 0x1 Yes Interrupt mask

IP R 0x2 Yes Interrupt pending

ICC W 0x3 Yes Instruction cache control

DCC W 0x4 Yes Data cache control

CC R 0x5 Yes Cycle counter

CFG R 0x6 No Configuration

EBA R/W 0x7 No Exception base address

Table 3: General-Purpose Registers (Continued)

Register Name Function Saver

Figure 4: Format of the PC CSR

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 10

EID – Exception ID
The EID CSR is a 3-bit value that indicates what has caused the program
execution to stop. The values and corresponding events are the following:

0 – Reset
1 – Breakpoint Exception
2 – Instruction Bus Error
3 – Watchpoint Exception
4 – Data Bust Error
5 – Divide-by-zero
6 – Interrupt
7 – System Call

IE – Interrupt Enable
The IE CSR contains a single-bit flag, IE, that determines whether interrupts
are enabled. This flag has priority over the IM CSR. In addition, there are two
bits, BIE and EIE, that are used to save the value of the IE field when either a
breakpoint or other exception occurs. Each interrupt is associated with a
mask bit (IE bit) indexed with each interrupt. After reset, the value of the IE
CSR is h00000000.

Figure 5: Format of the IE CSR

Table 5: Fields of the IE CSR

Field Values Description

IE 0 – Interrupts disabled

1 – Interrupts enabled

Determines whether interrupts are
enabled.

EIE 0 – Interrupts disabled

1 – Interrupts enabled

Holds a copy of the IE field when an
exception occurs.

BIE 0 – Interrupts disabled

1 – Interrupts enabled

Holds a copy of the IE field when a
breakpoint occurs.

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 11

IM – Interrupt Mask
The IM CSR contains an enable bit for each of the 32 interrupts. Bit 0
corresponds to interrupt 0. In order for an interrupt to be raised, both an
enable bit in this register and the IE flag in the IE CSR must be set to 1. After
reset, the value of the IM CSR is h00000000.

IP – Interrupt Pending
The IP CSR contains a pending bit for each of the 32 interrupts. A pending bit
is set when the corresponding interrupt request line is asserted low. Bit 0
corresponds to interrupt 0. Bits in the IP CSR can be cleared by writing a 1
with the wcsr instruction. Writing a 0 has no effect. After reset, the value of the
IP CSR is h00000000.

ICC – Instruction Cache Control
The ICC CSR provides a control bit that, when written with any value, causes
the contents of the entire instruction cache to be invalidated.

Figure 6: Format of the ICC CSR

Field Values Description

I Any – Invalidate instruction
cache

When written, the contents of the
instruction cache are invalidated.

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 12

DCC – Data Cache Control
The DCC CSR provides a control bit that, when written with any value, causes
the contents of the entire data cache to be invalidated.

CC – Cycle Counter
The CC CSR is an optional 32-bit register that is incremented on each clock
cycle. It can be used to profile ghost code sequences.

CFG – Configuration
The CFG CSR details the configuration of a particular instance of a
LatticeMico32 processor.

Figure 7: Format of the DCC CSR

Table 6: Fields of the DCC CSR

Field Values Description

I Any – Invalidate data cache When written, the contents of the data
cache are invalidated.

Figure 8: Format of the CFG CSR

Table 7: Fields of the CFG CSR

Field Values Description

M 0 – Multiply is not implemented

1 – Multiply is implemented

Indicates whether a hardware
multiplier is implemented.

D 0 – Divide is not implemented

1 – Divide is implemented

Indicates whether a hardware
divider is implemented.

S 0 – Barrel shift is not implemented

1 – Barrel shift is implemented

Indicates whether a hardware
barrel-shifter is implemented.

U Reserved.

X 0 – Sign extend is not implemented

1 – Sign extend is implemented

Indicates whether the sign-
extension instructions are
implemented.

CC 0 – Cycle counter is not implemented

1 – Cycle counter is implemented

Indicates whether the CC CSR is
implemented.

IC 0 – Instruction cache is not implemented

1 – Instruction cache is implemented

Indicates whether an instruction
cache is implemented.

Programmer’s Model Register Architecture

LatticeMico32 Processor Reference Manual 13

EBA – Exception Base Address
The EBA CSR specifies the base address of the exception handlers. After
reset, the value of EBA is set to EBA_RESET. If you write a value to the
register where the lower byte is not zero, it will read back all zeros. There is
no need for you to mask zeros to avoid issues.

DC 0 – Data cache is not implemented

1 – Data cache is implemented

Indicates whether a data cache is
implemented.

G 0 – Debug is not implemented

1 – Data cache is implemented

Indicates whether software-based
debug support is implemented.

H 0 – H/W debug is not implemented

1 – H/W debug is implemented

Indicates whether hardware-based
debug support is implemented.

R 0 – ROM debug is not implemented

1 – ROM debug is implemented

Indicates whether support for
debugging ROM-based programs is
implemented.

J 0 – JTAG UART is not implemented

1 – JTAG UART is implemented

Indicates whether a JTAG UART is
implemented.

INT 0 – 32 Indicates the number of external
interrupts.

BP 0 – 4 Indicates the number of breakpoint
CSRs.

WP 0 – 4 Indicates the number of watchpoint
CSRs.

REV 0 – 63 Processor revision number. This is
set automatically. You cannot reset
this field.

Table 7: Fields of the CFG CSR (Continued)

Field Values Description

Figure 9: Format of the EBA CSR

Programmer’s Model Memory Architecture

LatticeMico32 Processor Reference Manual 14

Memory Architecture
This section describes the memory architecture of the LatticeMico32
processor.

Address Space
The LatticeMico32 processor has a flat 32-bit, byte-addressable address
space. For LatticeMico32 processors with caches, the portion of the address
space that is cacheable can be configured separately for both the instruction
and data cache. This allows for the size of the cache tag RAMs to be
optimized to be as small as is required (the fewer the number of cacheable
addresses, the smaller the tag RAMs will be).

If an instruction cache is used, attempts to fetch instructions from outside of
the range of cacheable addresses result in undefined behavior, so only one
cached region is supported. Portions of the memory image are not cached, so
if a miss occurs, it will not be fetched.

Figure 10 illustrates some possible configurations. Typically, the parts of the
address space that are cacheable are used for storing code or program data,
with I/O components being mapped into uncacheable addresses.

Endianness
The LatticeMico32 processor is big-endian, which means that multi-byte
objects, such as half-words and words, are stored with the most significant
byte at the lowest address.

Figure 10: Cacheable Addresses

Programmer’s Model Memory Architecture

LatticeMico32 Processor Reference Manual 15

Address Alignment
All memory accesses must be aligned to the size of the access, as shown in
Table 8. No check is performed for unaligned access. All unaligned accesses
result in undefined behavior.

Stack Layout
Figure 11 shows the conventional layout of a stack frame. The stack grows
toward lower memory as data is pushed onto it. The stack pointer (sp) points
to the first unused location, and the frame pointer (fp) points at the first
location used in the active frame. In many cases, a compiler may be able to
eliminate the frame pointer, because data can often be accessed by using a
negative displacement from the stack pointer, freeing up the frame pointer for
use as a general-purpose register.

As illustrated in Table 3 on page 8, the first eight function arguments are
passed in registers. Any remaining arguments are passed on the stack, as
illustrated in Figure 11.

Table 8: Memory Access Alignment Requirements

Access Size Address Requirements

Byte None

Half-word Address must be half-word aligned (bit 0 must be 0)

Word Address must be word aligned (bits 1 and 0 must be 0)

Figure 11: Stack Layout

Previous frame

Incoming arguments

Locals

Callee saves

Outgoing arguments

Free memory
Lower Address

sp

fp

Higher Address

Programmer’s Model Memory Architecture

LatticeMico32 Processor Reference Manual 16

Caches
A cache is a fast memory (single-cycle access) that stores a copy of a limited
subset of the data held in main memory, which may take the CPU several
cycles to access. A cache helps improve overall performance by exploiting
the fact that the same data is typically accessed several times in a short
interval. By storing a local copy of the data in the processor’s cache, the
multiple cycles required to access the data can be reduced to just a single
cycle for all subsequent accesses once the data is loaded into the cache.

Cache Architecture
When a cache accesses a data item, it is also likely to access data at adjacent
addresses (such as with arrays or structures) by loading data into the cache in
lines. A line can consist of 4, 8, or 16 adjacent bytes, and is specified by the
BYTES_PER_LINE option.

A one-way associative (direct-mapped) cache consists of an array of cache
lines known as a “way.” To allow the cache to operate at a high frequency,
data from main memory can only be stored in a specific cache line. A two-way
associative cache consists of a two-dimensional array of cache lines. It
requires slightly more logic to implement but allows data from main memory to
be stored in one of two places in the cache. It helps performance by reducing
cache conflicts that occur when a program is accessing multiple data items
that would map to the same cache line in a one-way associative cache. The
number of lines in each way is specified by the ICACHE_SETS and
DCACHE_SETS options. The ways are assigned in a round-robin fashion.
Each time a cache miss occurs the way number is switched.

The LatticeMico32 caches are write-through, which means that whenever a
store instruction writes to an address that is cached, the data is written to both
the cache and main memory. A read-miss allocation policy means that a
cache line is only fetched from memory for a load instruction. If a cache miss

Figure 12: Cache Organization

Programmer’s Model Memory Architecture

LatticeMico32 Processor Reference Manual 17

occurs for a store instruction, the data is written directly to memory without the
cache being updated.

The LatticeMico32 processor supports a range of cache configurations, as
detailed in Table 9.

The LatticeMico32 caches are initialized automatically by embedded logic, so
they do not require a program to initialize or enable them.

Invalidating the Caches
The contents of the instruction cache can be invalidated by writing to the ICC
CSR. It is recommended that you follow the write to the ICC CSR with four
nops, as follows:

wcsr ICC, r0
nop
nop
nop
nop

The contents of the data cache can similarly be invalidated by writing to the
DCC CSR as follows:

wcsr DCC, r0

It is recommended that you avoid placing a load or store instruction
immediately before or after the wcsr instruction.

The LatticeMico32 caches are not kept consistent with respect to each other.
This means that if a store instruction writes to an area of memory that is
currently cached by the instruction cache, the instruction cache will not be
automatically updated to reflect the store. It is your responsibility to invalidate
the instruction cache after the write has taken place, if necessary.

Similarly, the caches do not snoop bus activity to monitor for writes by
peripherals (by DMA for example) to addresses that are cached. It is again
your responsibility to ensure that the cache is invalidated before reading
memory that may have been written by a peripheral.

Table 9: Cache Configurations

Attribute Values

Size 0 kB, 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB

Sets 128, 256, 512, 1024

Associativity 1, 2

Bytes-per-line 4, 8, 16

Write policy Write-through

Update policy Read miss only

Programmer’s Model Memory Architecture

LatticeMico32 Processor Reference Manual 18

Inline Memories
The LatticeMico32 processor enables you to optionally connect to on-chip
memory, through instruction and data ports, by using a local bus rather than
the Wishbone interface. Memory connected to the CPU in such a manner is
referred to as inline memory. Figure 13 shows a functional block diagram of
the LatticeMico32 processor with inline memories.

There are two types of inline memories:

Instruction Inline Memory – This memory component is connected to the
Instruction Port of the LatticeMico32 CPU and is used to hold only
program memory of any software application.

Data Inline Memory – This memory component is connected to the Data
Port of the LatticeMico32 CPU and is used to hold read-only or read/write
data of any software application.

Figure 13: LatticeMico32 Inline Memories

Note

The Instruction Inline Memory is also connected to the Data Port of the
LatticeMico32 CPU in order to facilitate loading of the memory image of
the software application through the command line lm32-elf-gdb or
through the C/C++ SPE Debugger.

Programmer’s Model Memory Architecture

LatticeMico32 Processor Reference Manual 19

While it is possible to create a LatticeMico32 platform that contains inline
memories as the sole memory components, inline memories can co-exist in a
platform with other Wishbone-based memory components. Inline memories
act as types of main memories, but with the difference that the contents of
these memories are not cached.

Performance Advantage Over Wishbone-based Memory
without Caches
The direct connection between CPU and EBR-based inline memory has the
advantage of providing a single-cycle read/write access to the CPU. Figure 14
shows cycle-level analysis of potential performance benefits of inline memory
when compared to on-chip memory (EBR) that is connected to the CPU
through the Wishbone interface.

This diagram compares the number of cycles it takes to service read access
from the LatticeMico32 CPU by the inline memory versus the Wishbone-
based on-chip EBR. The read access initiated to inline memory will be
completed in the next cycle, whereas a read access initiated to EBR will take
four cycles. A similar behavior can be seen for writes initiated by the

Figure 14: Cycle-level Analysis

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 20

LatticeMico32 CPU. This shows that deploying program code or data to inline
memory can provide at least a 3x speedup over Wishbone-based memories.

Performance Advantage Over Wishbone-based Memory
with Caches
It is common to configure the LatticeMico32 CPU with Instruction and Data
caches to reduce the performance impact of accessing Wishbone-based
memories, since they theoretically provide a single-cycle access. In practice,
however, you will encounter situations in which a single-cycle cache access is
not possible. In these situations, inline memory affords a performance
advantage. Such situations include the following scenarios:

Any cache access (read or write) that results in a miss will initiate an
access to memory components on the Wishbone Interface. As a result,
the cache access will not take multiple cycles to complete.

The data cache in LatticeMico32 is write-through, meaning that any write
to the data cache from LatticeMico32 will immediately result in access to
memory components on the Wishbone interface. This means that all data
cache writes are multicycle accesses.

Exceptions
Exceptions are events either inside or outside of the processor that cause a
change in the normal flow of program execution. The LatticeMico32 processor
can raise eight types of exceptions, as shown in Table 10. One clock must be
held in active high until an acknowledge (ACK_I) is accepted. The remaining
are internal and no ACK_I is generated. The exceptions are listed in a
decreasing order of priority, so if multiple exceptions occur simultaneously, the
exception with the highest priority is raised.

Table 10: Exceptions

Exception ID Condition

Reset 0 Raised when the processor’s reset pin is asserted.

Breakpoint 1 Raised when either a break instruction is executed or when
a hardware breakpoint is triggered.

InstructionBusError 2 Raised when an instruction fetch fails, typically due to the
requested address being invalid.

Watchpoint 3 Raised when a hardware watchpoint is triggered.

DataBusError 4 Raised when a data access fails, typically because either
the requested address is invalid or the type of access is not
allowed.

DivideByZero 5 Raised when an attempt is made to divide by zero.

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 21

Exception Processing
Exceptions occur in the execute pipeline stage. If there is an instruction in the
memory pipeline stage, that instruction is first allowed to finish. All instructions
from the Execute stage back are then killed and do not cause any user-
transparent state changes. For example, no flags are set.

DataBusError exceptions are imprecise, so the exception may not necessarily
be raised on the load or store instruction that caused the bus error (it will be
raised on some later instruction). This imprecise behavior allows for high-
performance implementations where the pipeline need not be stalled until a
store instruction commits to memory. It is acceptable because bus errors are
non-recoverable.

The sequence of operations performed by the processor after an exception
depends upon the type of the highest priority exception that has occurred.

Non-Debug Exceptions
When a non-debug related exception occurs, the address of the instruction in
the execute stage of the processor’s pipeline is saved in the ea register. The
global interrupt enable held in the IE.IE register is copied to the IE.EIE register
and then cleared, disabling interrupts. Finally, the PC is set to the address of
the exception handler, which is derived from the address contained in the
EBA, if the DC.RE bit is not set, or the DEBA, if the DC.RE bit is set.

ea = PC
IE.EIE = IE.IE
IE.IE = 0
PC = (DC.RE ? DEBA:EBA) + (ID * 32)

Debug Exceptions
When a debug-related exception occurs, such as a breakpoint or watchpoint
exception, the address of the instruction in the execute stage of the
processor’s pipeline is saved in the ba register. The global interrupt enable
held in the IE.IE register is copied to the IE.BIE register and then cleared,
disabling interrupts. Finally, the PC is set to the address of the exception
handler, which is derived from the address contained in the DEBA.

ba = PC
IE.BIE = IE.IE
IE.IE = 0
PC = DEBA + (ID * 32)

Interrupt 6 Raised when one of the processor’s interrupt pins is
asserted, providing that the corresponding field in the
interrupt mask (IM) CSR is set and the global interrupt
enable flag, IE.IE, is set.

SystemCall 7 Raised when an scall instruction is executed.

Table 10: Exceptions

Exception ID Condition

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 22

Nesting Exceptions
Because different registers are used to save a state when a debug-related
exception occurs (ba and IE.BIE instead of ea and IE.EIE), limited nesting of
exceptions is possible, allowing the interrupt handler code to be debugged.
Any further nesting of exceptions requires software support.

Interrupts
The LatticeMico32 processor supports up to 32 maskable, active-low, level-
sensitive interrupts. Each interrupt line has a corresponding mask bit in the IM
CSR. The mask enable is active high. A global interrupt enable flag is
implemented in the IE CSR. Software can query the status of the interrupts
and acknowledge them through the IP CSR.

If more interrupt sources or more sophisticated interrupt detection methods
are required, external interrupt controllers can be cascaded onto the
processor’s interrupt pins to provide the needed functionality.

Exception Handlers
When an exception occurs, the CPU branches to an address that is an offset
from either the EBA CSR or the DEBA CSR. The offset is calculated by
multiplying the exception ID by 32. Exception IDs are shown in Figure 10 on
page 20. Since all LatticeMico32 instructions are four bytes long, this means
each exception handler can be eight instructions long. If further instructions
are required, the handler can call a subroutine.

Whether the EBA or DEBA is used as the base address depends upon the
type of the exception that occurred and whether DC.RE is set. Having two
different base addresses for the exception table allows a debug monitor to
exist in a different memory from the main program code. For example, the
debug monitor may exist in an on-chip ROM, whereas the main program code
may be in a DDR or SRAM. The DC.RE flag allows either interrupts to run at
full speed when debugging or for the debugger to take complete control and
handle all exceptions.

When an exception occurs, the only state that is automatically saved by the
CPU is the PC, which is saved in either ea or ba, and the interrupt enable flag,
IE.IE, which is saved in either IE.EIE or IE.BIE. It is the responsibility of the
exception handler to save and restore any other registers that it uses, if it
returns to the previously executing code. This will likely be the case for
interrupt exception handlers but may not be so for handlers that typically
result in the termination of a program, such as divide by zero or bus error
handlers.

The following piece of code shows how the exception handlers can be
implemented. The nops are required to ensure that the next exception handler
is aligned at the correct address.

To ensure that this code is at the correct address, it is common practice to
place it in its own section. Place the following assembler directive at the start
of the code:

.section .boot, "ax", @progbits

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 23

Figure 15: Exception Handler Example

/* Exception handlers */

_reset_handler:
 xor r0, r0, r0
 bi _crt0
 nop
 nop
 nop
 nop
 nop
 nop

_breakpoint_handler:
 sw (sp+0), ra
 calli save_all
 mvi r1, SIGTRAP
 calli raise
 bi restore_all_and_bret
 nop
 nop
 nop

_instruction_bus_error_handler:
 sw (sp+0), ra
 calli save_all
 mvi r1, SIGSEGV
 calli raise
 bi restore_all_and_eret
 nop
 nop
 nop

_watchpoint_handler:
 sw (sp+0), ra
 calli save_all
 mvi r1, SIGTRAP
 calli raise
 bi restore_all_and_bret
 nop
 nop
 nop

_data_bus_error_handler:
 sw (sp+0), ra
 calli save_all
 mvi r1, SIGSEGV
 calli raise
 bi restore_all_and_eret
 nop
 nop
 nop

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 24

_divide_by_zero_handler:
 sw (sp+0), ra
 calli save_all
 mvi r1, SIGFPE
 calli raise
 bi restore_all_and_eret
 nop
 nop
 nop

_interrupt_handler:
 sw (sp+0), ra
 calli save_all
 mvi r1, SIGINT
 calli raise
 bi restore_all_and_eret
 nop
 nop
 nop

_system_call_handler:
 sw (sp+0), ra
 calli save_all
 mv r1, sp
 calli handle_scall
 bi restore_all_and_eret
 nop
 nop
 nop

_save_all:
 addi sp, sp, -56
 /* Save all caller save registers onto the stack */
 sw (sp+4), r1
 sw (sp+8), r2
 sw (sp+12), r3
 sw (sp+16), r4
 sw (sp+20), r5
 sw (sp+24), r6
 sw (sp+28), r7
 sw (sp+32), r8
 sw (sp+36), r9
 sw (sp+40), r10
 sw (sp+48), ea
 sw (sp+52), ba
 /* ra needs to be moved from initial stack location */
 lw r1, (sp+56)
 sw (sp+44), r1
 ret

Figure 15: Exception Handler Example (Continued)

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 25

Then in the linker script, place the code at the reset value of EBA or DEBA, as
shown in Figure 16.

/* Restore all registers and return from exception */
_restore_all_and_eret:
 lw r1, (sp+4)
 lw r2, (sp+8)
 lw r3, (sp+12)
 lw r4, (sp+16)
 lw r5, (sp+20)
 lw r6, (sp+24)
 lw r7, (sp+28)
 lw r8, (sp+32)
 lw r9, (sp+36)
 lw r10, (sp+40)
 lw ra, (sp+44)
 lw ea, (sp+48)
 lw ba, (sp+52)
 addi sp, sp, 56
 eret

/* Restore all registers and return from breakpoint */
_restore_all_and_bret:
 lw r1, (sp+4)
 lw r2, (sp+8)
 lw r3, (sp+12)
 lw r4, (sp+16)
 lw r5, (sp+20)
 lw r6, (sp+24)
 lw r7, (sp+28)
 lw r8, (sp+32)
 lw r9, (sp+36)
 lw r10, (sp+40)
 lw ra, (sp+44)
 lw ea, (sp+48)
 lw ba, (sp+52)
 addi sp, sp, 56
 bret

Figure 16: Placing Exception Handler in Memory

MEMORY
{

ram : ORIGIN = 0x00000000, LENGTH = 0x00100000
}

SECTIONS
{

.boot : { *(.boot) } > ram
}

Figure 15: Exception Handler Example (Continued)

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 26

Nested Exceptions
If desirable, it is possible to support nested exceptions with a small amount of
software code. There are two situations where this may be needed:

To allow system calls to be callable from exception handlers

To prioritize interrupts

To enable nested exceptions, an exception handler must save all the state
that is modified when an exception occurs, including the ea and ba registers,
as well as the IE CSR. These registers can simply be saved on the stack.
When returning from the exception handler, these registers must, obviously,
be restored from the values saved on the stack.

To support nested prioritized interrupts, an exception handler should save the
registers just outlined, then save the IM CSR, and then mask all lower-priority
interrupts. IE.IE can then be set to re-enable interrupts. When the interrupt
handler has finished, IE.IE should be cleared before all the saved registers,
including IM, are restored.

Remapping the Exception Table
In order to increase performance, the exception table can be remapped at run
time by writing a new value to EBA. It would be used in a system in which the
power-up value of EBA points to a slow, non-volatile memory, such as a
FLASH memory, but the code is executed from a faster, non-volatile RAM,
such as DDR or SRAM.

Reset Summary
During reset, the following occurs:

All CSRs are set to their reset values as listed in “Control and Status
Registers” on page 9.

Interrupts are disabled.

All hardware breakpoints and watchpoints are disabled.

If implemented, the contents of the caches are invalidated.

A reset exception is raised, which causes the PC to be set to the value in
the EBA CSR, where program execution starts.

The register file is not reset, so it is the responsibility of the reset exception
handler to set register 0 to 0. This should be achieved by executing the
following sequence: xor r0, r0, r0.

Programmer’s Model Exceptions

LatticeMico32 Processor Reference Manual 27

Using Breakpoints
The LatticeMico32 architecture supports both software and hardware
breakpoints. Software breakpoints should be used for setting breakpoints in
code that resides in volatile memory, such as DDR or SRAM, while hardware
breakpoints should be used for setting breakpoints in code that resides in
non-volatile memory, such as FLASH or ROM.

A software breakpoint is simply a break instruction. In order to set a
breakpoint, it is simply a case of replacing the instruction at the desired
address with the break instruction. When the break instruction is executed, a
breakpoint exception is raised, and the ba register contains the address of the
break instruction that was executed. It is then up to the exception handler to
either restore the instruction that was overwritten and continue execution, or
to take some other action, depending upon why the breakpoint was set.

It is typically either not possible or very slow to write a break instruction to
non-volatile RAM. For processors with breakpoints greater than 0, it is
possible to set a hardware breakpoint by writing the address of the instruction
on which the breakpoint should be set to one of the BPn CSRs. The
processor then constantly compares the values in these BPn CSRs with the
address of the instruction being executed. If a match occurs, and the
breakpoint is enabled (by the LSB being set to 1), a breakpoint exception will
be raised. As with software breakpoints, the address of the instruction that
caused the breakpoint is saved in the ba register. If the breakpoint exception
handler wishes to resume program execution, it must clear the enable bit in
the relevant BP CSR; otherwise, the breakpoint exception is raised as soon
as execution resumes.

Using Watchpoints
The LatticeMico32 architecture supports hardware watchpoints. Watchpoints
are a mechanism by which a program can watch out for specific memory
accesses. For example, a program can set up a watchpoint that will cause a
watchpoint exception to be raised every time the address 0 is accessed
(something that is useful for tracking down null pointer errors in C programs).

To set up a watchpoint, the memory address that is being watched must be
written to one of the WPn CSRs. The watchpoint then needs to be enabled by
writing the corresponding C field in the DC CSR. This field takes one of the
four values that indicate the following:

The watchpoint is disabled.

The watchpoint exception is only raised on read accesses.

The watchpoint exception is only raised on write accesses.

The watchpoint exception is raised on either read or write accesses.

Programmer’s Model Debug Architecture

LatticeMico32 Processor Reference Manual 28

Debug Architecture
This section describes the debug architecture of the LatticeMico32 processor.

The LatticeMico32 debug architecture provides:

Software breakpoints

Hardware breakpoints

Hardware watchpoints

Single-step capability

Ability to remap exception handlers when debugging is enabled

Hardware support for debugging interrupt handlers

Table 11 shows the debug control and status registers.

Table 11: Debug Control and Status Registers

Name Access Index Description

DC W 0x8 Debug control

DEBA R/W 0x9 Debug exception base address

JTX R/W 0xe JTAG UART transmit

JRX R/W 0xf JTAG UART receive

BP0 W 0x10 Breakpoint address 0

BP1 W 0x11 Breakpoint address 1

BP2 W 0x12 Breakpoint address 2

BP3 W 0x13 Breakpoint address 3

WP0 W 0x18 Watchpoint address 0

WP1 W 0x19 Watchpoint address 1

WP2 W 0x1a Watchpoint address 2

WP3 W 0x1b Watchpoint address 3

Programmer’s Model Debug Architecture

LatticeMico32 Processor Reference Manual 29

DC – Debug Control
The DC CSR contains flags that control debugging facilities. After reset, the
value of the DC CSR is h00000000. This CSR is only implemented if
DEBUG_ENABLED equals TRUE.

Figure 17: Format of the DC CSR

DEBA – Debug Exception Base Address
The DEBA CSR specifies the base address of the debug exception handlers.
After reset, the value of the DEBA CSR is set to DEBA_RESET. This CSR is
only implemented if DEBUG_ENABLED equals TRUE.

Figure 18: Format of the DEBA CSR

JTX – JTAG UART Transmit Register
The JTX CSR can be used for transmitting data through a JTAG interface.
This CSR is only implemented if JTAG_UART_ENABLED equals TRUE.

Figure 19: Format of the JTX CSR

Table 12: Fields of the DC CSR

Field Value Description

SS 0 – Single step disabled

1 – Single step enabled

Determines whether single-stepping is
enabled

RE 0 – Remap only debug
exceptions

1 – Remap all exceptions

Determines whether all exceptions are
remapped to the base address specified
by DEBA or just debug exceptions

Cn b00 – Watchpoint n disabled

b01 – Break on read

b10 – Break on write

b11 – Break on read or write

Enable for corresponding Wpn CSR

Programmer’s Model Debug Architecture

LatticeMico32 Processor Reference Manual 30

JRX – JTAG UART Receive Register
The JRX CSR can be used for receiving data through a JTAG interface. This
CSR is only implemented if JTAG_UART_ENABLED equals TRUE.

Figure 20: Format of the JRX CSR

BPn – Breakpoint
The BPn CSRs hold an instruction breakpoint address and a control bit that
determines whether the breakpoint is enabled. Because instructions are
always word-aligned, only the 30 most significant bits of the breakpoint
address are needed. After reset, the value of the BPn CSRs is h00000000.

These CSRs are only implemented if DEBUG_ENABLED equals TRUE.

Figure 21: Format of the BPn CSRs

Table 13: Fields of the JTX CSR

Field Values Description

TXD Transmits data

F 0 – Empty

1 – Full

Indicates whether the transmit data
register is full

Table 14: Fields of the JTX CSR

Field Values Description

RXD Receives data.

F 0 – Empty

1 – Full

Indicates whether the receive data
register is full.

Table 15: BPn CSR Fields

Field Value Description

E b0 – Breakpoint is disabled

b1 – Breakpoint is enabled

Breakpoint enable

A Breakpoint address (Bits 31:2)

Programmer’s Model Instruction Set Categories

LatticeMico32 Processor Reference Manual 31

WPn – Watchpoint
The WPn CSRs hold data watchpoint addresses. After reset, the value of the
WPn CSRs is h00000000. These CSRs are only implemented if
DEBUG_ENABLED equals TRUE.

Instruction Set Categories
LatticeMico32 supports a variety of instructions for arithmetic, logic, data
comparison, data movement, and program control. Not all instructions are
available in all configurations of the processor. Support for some types of
instructions can be eliminated to reduce the amount of FPGA resources used.
See “Configuring the LatticeMico32 Processor” on page 35.

Instructions ending with the letter “i” use an immediate value instead of a
register. Instructions ending with “hi” use a 16-bit immediate and the high 16
bits from a register. Instructions ending with the letter “u” treat the data as
unsigned integers.

For descriptions of individual instructions, see “Instruction Set” on page 49.

Arithmetic
The instruction set includes the standard 32-bit integer arithmetic operations.
Support for the multiply and divide instructions is optional.

Add: add, addi

Subtract: sub

Multiply: mul, muli

Divide and modulus: divu, modu

There are also instructions to sign-extend byte and half-word data to word
size. Support for these instructions is optional.

Sign-extend: sextb, sexth

Logic
The instruction set includes the standard 32-bit bitwise logic operations. Most
of the logic instructions also have 16-bit immediate or high 16-bit versions.

AND: and, andi, andhi

OR: or, ori, orhi

Exclusive-OR: xor, xori

Complement: not

NOR: nor, nori

Exclusive-NOR: xnor, xnori

Programmer’s Model Instruction Set Categories

LatticeMico32 Processor Reference Manual 32

Comparison
The instruction set has basic comparison instructions with versions for
register-to-register and register-to-16-bit-immediate and signed and unsigned
comparisons. The instructions return 1 if true and 0 if false.

Equal: cmpe, cmpei

Not equal: cmpne, cmpnei

Greater: cmpg, cmpgi, cmpgu, cmpgui

Greater or equal: cmpge, cmpgei, cmpgeu, cmpgeui

Shift
The instruction set supports left and right shifting of data in general-purpose
registers. The number of bits to shift can be given through a register or a 5-bit
immediate. The right shift instruction has signed and unsigned versions (also
known as arithmetic and logical shifting). Support for shift instructions is
optional.

Left shift: sl, sli

Right shift: sr, sri, sru, srui

Data Transfer
Data transfer includes instructions that move data of byte, half-word, and
word sizes between memory and registers. Memory addresses are relative
and given as the sum of a general-purpose register and a signed 16-bit
immediate, for example, (r2+32).

Load register from memory: lb, lbu, lh, lhu, lw

Byte and half-word values are either sign-extended or zero-extended to fill
the register.

Store register to memory: sb, sh, sw

Byte and half-word values are taken from the lowest order part of the
register.

There are also instructions for moving data from one register to another,
including general-purpose and control and status registers.

Move between general-purpose registers: mv

Move immediate to high 16 bits of register: mvhi

Read and write control and status register: rcsr, wcsr

Program Flow Control
Program flow control instructions include branches, function and exception
calls, and returns. The conditional branches and the immediate versions of
the unconditional branch and call instructions establish the next instruction’s
address by adding a signed immediate to the PC register. Since the
immediate is signed, the jump can be to a lower or higher address.

Unconditional branch: b, bi

Programmer’s Model Instruction Set Categories

LatticeMico32 Processor Reference Manual 33

Branch if equal: be

Branch if not equal: bne

Branch if greater: bg, bgu

Branch if greater or equal: bge, bgeu

Function call and return: call, calli, ret

System call: scall

Return from exception: eret

Software breakpoint and return: break, bret

Programmer’s Model Instruction Set Categories

LatticeMico32 Processor Reference Manual 34

LatticeMico32 Processor Reference Manual 35

3
Configuring the
LatticeMico32 Processor

This chapter describes possible configuration options that you can use for the
LatticeMico32 processor. You are expected to use the Lattice Mico System
Builder (MSB) tool to configure the LatticeMico32 processor. Use the
processor's configuration GUI, located in the MSB, to specify the Verilog
parameters of the processor's RTL. For more information on the processor's
configuration GUI, refer to LatticeMico32 online Help.

Configuration Options

Table 16 describes the Verilog parameters for the LatticeMico32 processor.

Table 16: Verilog Configuration Options

Parameter Name Values Default Description

MC_MULTIPLY_ENABLED TRUE, FALSE FALSE Enables LUT-based multicycle multiplier. mul,
muli instructions are implemented. Multiply
instructions take 32 cycles to complete.

PL_MULTIPLY_ENABLED TRUE, FALSE TRUE Enables pipelined multiplier (uses DSP blocks
if available). mul, muli instructions are
implemented. Multiply instructions take 3
cycles to complete.

DIVIDE_ENABLED TRUE, FALSE FALSE Determines whether the divide and modulus
instructions (divu, modu) are implemented.

Configuring the LatticeMico32 Processor Configuration Options

LatticeMico32 Processor Reference Manual 36

MC_BARREL_SHIFT_ENABLED TRUE, FALSE FALSE Enables LUT-based multicycle barrel
shifter. Enables shift instructions (sr, sri, sru,
srui, sl, sli). Each shift instruction can take
up to 32 cycles. If both
SIGN_EXTEND_ENABLED and
PL_BARREL_SHIFT_ENABLED are FALSE,
this option must be set to TRUE.

PL_BARREL_SHIFT_ENABLED TRUE, FALSE TRUE Enables pipelined barrel shifter. Enables shift
instructions (sr, sri, sru, srui, sl, sli). Shift
instructions take 3 cycles to complete. If both
MC_BARREL_SHIFT_ENABLED and
SIGN_EXTEND_ENABLED are FALSE, this
option must be set to TRUE.

SIGN_EXTEND_ENABLED TRUE, FALSE FALSE Determines whether the sign-extension
instructions (sextb, sexth) are implemented. If
both MC_BARREL_SHIFT_ENABLED and
PL_BARREL_SHIFT_ENABLED are FALSE,
this option must be set to TRUE.

DEBUG_ENABLED TRUE, FALSE TRUE Determines whether software-based
debugging support is implemented (that is, a
ROM monitor is required to debug).

HW_DEBUG_ENABLED TRUE, FALSE TRUE Determines whether hardware-based
debugging support is implemented (that is, a
ROM monitor is not required to debug). If this
option is set to TRUE, DEBUG_ENABLED and
JTAG_ENABLED must also be set to TRUE.

ROM_DEBUG_ENABLED TRUE, FALSE FALSE Determines whether support for debugging
ROM-based programs is implemented. If this
option is set to TRUE, DEBUG_ENABLED
must also be set to TRUE.

BREAKPOINTS 0-4 Specifies the number of breakpoint CSRs. If
this option is set to a non-zero value,
ROM_DEBUG_ENABLED must be set to
TRUE.

WATCHPOINTS 0-4 Specifies the number of watchpoint CSRs. If
this option is set to a non-zero value,
SW_DEBUG_ENABLED must be set to TRUE.

JTAG_ENABLED TRUE, FALSE TRUE Determines whether a JTAG interface is
implemented.

JTAG_UART_ENABLED TRUE, FALSE TRUE Determines whether a JTAG UART is
implemented. If this option is set to TRUE,
JTAG_ENABLED must be set to TRUE.

CYCLE_COUNTER_ENABLED TRUE, FALSE FALSE Determines whether a cycle counter is
implemented.

ICACHE_ENABLED TRUE, FALSE TRUE Determines whether an instruction cache is
implemented.

Table 16: Verilog Configuration Options (Continued)

Parameter Name Values Default Description

Configuring the LatticeMico32 Processor Configuration Options

LatticeMico32 Processor Reference Manual 37

ICACHE_BASE_ADDRESS Any address
aligned to the
size of the
cacheable
region.

0 Specifies the base address of region
cacheable by instruction cache.

ICACHE_LIMIT Any integer
multiple of the
capacity of the
cache added
to the base
address of the
cacheable
region

0x7FFFFFFF Specifies the upper limit of region cacheable
by instruction cache.

ICACHE_SETS 128, 256, 512,
1024

512 Specifies the number of sets in the instruction
cache.

ICACHE_ASSOCIATIVITY 1, 2 1 Specifies the associativity of instruction cache.

ICACHE_BYTES_PER_LINE 4, 8, 16 4 Specifies the number of bytes per instruction
cache line.

DCACHE_ENABLED TRUE, FALSE TRUE Determines whether a data cache is
implemented.

DCACHE_BASE_ADDRESS Any address
aligned to the
size of the
cacheable
region

0 Specifies the base address of region
cacheable by data cache.

DCACHE_LIMIT Any integer
multiple of the
capacity of the
cache added
to the base
address of the
cacheable
region

0x0FFFFFFF Specifies the upper limit of region cacheable
by data cache.

DCACHE_SETS 128, 256, 512,
1024

512 Specifies the number of sets in the data cache.

DCACHE_ASSOCIATIVITY 1, 2 1 Specifies the associativity of the data cache.

DCACHE_BYTES_PER_LINE 4, 8, 16 4 Specifies the number of bytes per data cache
line.

INTERRUPTS 0–32 32 Specifies the number of external interrupts.

EBA_RESET Any 256-byte
aligned
address

0 Specifies the reset value of the EBA CSR.

Table 16: Verilog Configuration Options (Continued)

Parameter Name Values Default Description

Configuring the LatticeMico32 Processor EBR Use

LatticeMico32 Processor Reference Manual 38

EBR Use
The following details of embedded block RAM (EBR) use with different
configurations are based on the LatticeECP family of FPGAs.

Software-based debugging (DEBUG_ENABLED) requires two EBRs.

The instruction and data caches (ICACHE_ENABLED and
DCACHE_ENABLED, respectively) require EBR based on the size of the
cache:

cache size = sets × bytes per cache line × associativity

number of EBR = cache size/1024 + 1

For example, the default LatticeMico32 processor in the MSB has software-
based debugging, an instruction cache, and a data cache. Both caches have
512 sets, 16 bytes per cache line, and an associativity of 1.

For each cache:

cache size = 512 × 16 × 1 = 8192

number of EBR = 8192/1024 + 1 = 9

Total number of EBRs required:

DEBA_RESET Any 256-byte
aligned
address

0 Specifies the reset value of the DEB_CSR.

EBR_POSEDGE_REGISTER_FILE TRUE, FALSE FALSE Use EBR to implement register file instead of
distributed RAM (LUTs).

Table 16: Verilog Configuration Options (Continued)

Parameter Name Values Default Description

Software-based debugging
Instruction cache
Data cache

2
9
9

20

LatticeMico32 Processor Reference Manual 39

4
WISHBONE Interconnect
Architecture

This chapter describes the standard WISHBONE interconnect architecture
that is employed by LatticeMico32 System. It focuses on the items that you
must be aware of to begin designing and programming the functions of your
system interconnects.

Introduction to WISHBONE Interconnect
LatticeMico32 System uses a standard WISHBONE interconnect architecture
to connect the processor to its on-chip component resources, such as the
LatticeMico32 UART and the LatticeMico32 SPI.

The WISHBONE interconnect works as a general-purpose interface, defining
the standard data exchanges between the processor module and its
components. The interconnect does not interfere with the regulation of the
processor or component application-specific functions. Like microcomputer
buses, the WISHBONE bus is flexible enough to be tailored to a specific
application, robust enough to provide a number of bus cycles and data path
widths to solve various system issues, and universal enough to allow a
number of suppliers to create design products for it, making it more cost-
effective.

For more information on the WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, as it is formally known,
refer to the OPENCORES.ORG Web site at www.opencores.org/projects.cgi/
web/wishbone. The subject matter is very detailed and goes beyond the
scope of this manual.

http://www.opencores.org/projects.cgi/web/wishbone
http://www.opencores.org/projects.cgi/web/wishbone

WISHBONE Interconnect Architecture WISHBONE Registered Feedback Mode

LatticeMico32 Processor Reference Manual 40

WISHBONE Registered Feedback Mode
This section describes the WISHBONE Registered Feedback mode. To
implement an advanced synchronous cycle termination scheme, Registered
Feedback mode bus cycles use the Cycle Type Identifier, CTI_O() and
CTI_I(), address tags. Both master and slave interfaces support CTI_O() and
CTI_I() for improved bandwidth. The type of burst information is provided by
the Burst Type Extension, BTE_O() and BTE_I() address tags.

All WISHBONE Registered Feedback-compatible cores must support
WISHBONE Classic bus cycles.

Design new IP cores to support WISHBONE Registered Feedback bus cycles
to ensure maximum throughput in all systems.

CTI_IO()
The cycle-type identifier CTI_IO() address tag provides additional information
about the current cycle. The master sends this information to the slave. The
slave can use this information to prepare the response for the next cycle.

Observe the following allowances and rules:

Master and slave interfaces may be designed to support the CTI_I() and
CTI_O() signals. Also, master and slave interfaces may be designed to
support a limited number of burst types.

Master and slave interfaces that do support the CTI_I() and CTI_O()
signals must at least support the Classic cycle CTI_IO()=000 and the
End-of-Cycle CTI_IO()=111.

Master and slave interfaces that are designed to support a limited number
of burst types must complete the unsupported cycles as though they were
WISHBONE Classic cycle, that is, CTI_IO()=000.

For description languages that allow default values for input ports (like
VHDL), CTI_I() may be assigned a default value of 000.

Table 17: Cycle Type Identifiers

CTI_O(2:0) Description

000 Classic cycle

001 Constant address burst cycle

010 Incrementing burst cycle

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 End of burst

WISHBONE Interconnect Architecture WISHBONE Registered Feedback Mode

LatticeMico32 Processor Reference Manual 41

In addition to the WISHBONE Classic rules for generating cycle
termination signals ACK_O, RTY_O, and ERR_O, a SLAVE may assert a
termination cycle without checking the STB_I signal.

ACK_O, RTY_O, and ERR_O may be asserted while STB_O is negated.

A cycle terminates when the cycle termination signal, STB_I and STB_O
are asserted. Even if ACK_O/ACK_I is asserted, the other signals are only
valid when STB_O/STB_I is also asserted.

To avoid the inherent wait state in synchronous termination schemes, the
slave must generate the response as soon as possible, that is, the next cycle.
It can use the CTI_I() signals to determine the response for the next cycle,
but if it cannot determine the state of STB_I for the next cycle, it must
generate the response independent of STB_I.

BTE_IO()
The burst-type extension BTE_IO() address tag provides additional
information about the current burst. The master sends this information to the
slave. This information is only relevant for incrementing bursts. In the future,
other burst types may use these signals. See Table 18 for BTE_IO(1:0) signal
incrementing and decrementing bursts.

Observe the following allowances and rules:

Master and slave interfaces that support incrementing burst cycles must
support the BTE_O() and BTE_I() signals.

Master and slave interfaces may be designed to support a limited number
of burst extensions.

Master and slave interfaces that are designed to support a limited number
of burst extensions must complete the unsupported cycles as though they
were WISHBONE Classic cycle, that is, CTI_IO()= 000.

Table 18: Burst Type Extension Signal Bursts

BTE_IO(1:0) Description

00 Linear burst

01 4-beat wrap burst

10 8-beat wrap burst

11 16-beat wrap burst

WISHBONE Interconnect Architecture Component Signals

LatticeMico32 Processor Reference Manual 42

Component Signals
In Mico System Builder (MSB), you define which components are in the
platform and what needs to communicate with what. When the platform
generator is run in MSB, it uses this information to build the WISHBONE-
based interconnect of the platform. This generated interconnect is a set of
Verilog wires connecting the various processor and component ports. To do
this, the components must implement certain ports and follow a specific port-
naming convention.

Table 19 defines the suffixes that must be used on the names of a
component's ports. The suffixes of the ports of a master port are different than
those of a slave port. The generated interconnect creates signals with names
that end with the same suffix as the component port to which the signal is
attached. Table 19 also notes which signals are mandatory and which are
optional to support the basic WISHBONE bus cycle.

The prefixes used in the port and signal naming are not described in this
section.

The port and signal descriptions that follow refer to the port or signal that ends
with the string in the title.

Table 19: List of Component Port and Signal Name Suffixes

Master Ports Slave Ports

Name Width Optional (O)/
Mandatory (M)

Name Width Optional (O)/
Mandatory (M)

_ADR_O 32 bits M _ADR_I 32 bits M

_DAT_O 32 bits M _DAT_I 32 bits M

_DAT_I 32 bits M _DAT_O 32 bits M

_SEL_O 4 bits M _SEL_I 4 bits M

_WE_O 1 bit M _WE_I 1 bit M

_ACK_I 1 bit M _ACK_O 1 bit M

_ERR_I 1 bit O _ERR_O 1 bit O

_RTY_I 1 bit O _RTY_O 1 bit O

_CTI_O 3 bits O _CTI_I 3 bits O

_BTE_O 2 bits O _BTE_I 2 bits O

_LOCK_O 1 bit O _LOCK_I 1 bit O

_CYC_O 1 bit M _CYC_I 1 bit M

_STB_O 1 bit M _STB_I 1 bit M

WISHBONE Interconnect Architecture Component Signals

LatticeMico32 Processor Reference Manual 43

Master Port and Signal Descriptions
This section describes the master ports and signals listed in Table 19.

ADR_O [31:2]
The address output array ADR_O() is used to pass a binary address.
ADR_O() actually has a full 32 bits. But, because all addressing is on
DWORD (4-byte) boundaries, the lowest two bits are always zero.

DAT_O [31:0]
The data output array DAT_O() is used to store a binary value for output.

DAT_I [31:0]
The data input array DAT_I() is used to store a binary value for input.

SEL_O [3:0]
The Select Output array SEL_O() indicates where valid data is expected on
the DAT_I() signal array during READ cycles and where it is placed on the
DAT_O() signal array during WRITE cycles. The array boundaries are
determined by the granularity of a port.

WE_O
The write enable output WE_O indicates whether the current local bus cycle
is a READ or WRITE cycle. The signal is negated during READ cycles and is
asserted during WRITE cycles.

ACK_I
This signal is called the acknowledge input ACK_I. When asserted, the signal
indicates the normal termination of a bus cycle by the slave. Also see the
ERR_I and RTY_I signal descriptions.

ERR_I
The Error Input ERR_I indicates an abnormal cycle termination by the slave.
The source of the error and the response generated by the master depends
on the master functionality. Also see the ACK_I and RTY_I signal
descriptions.

RTY_I
The Retry Input RTY_I indicates that the interface is not ready to accept or
send data, so the cycle should be retried. The core functionality defines when
and how the cycle is retried. Also see the ERR_I and RTY_I signal
descriptions.

WISHBONE Interconnect Architecture Component Signals

LatticeMico32 Processor Reference Manual 44

CTI_O [2:0]
For descriptions of the cycle-type identifier CTI_O(), see “CTI_IO()” on
page 40.

BTE_O [1:0]
For descriptions of the burst-type extension BTE_O(), see “BTE_IO()” on
page 41.

LOCK_O
The lock output LOCK_O, when asserted, indicates that the current bus cycle
cannot be interrupted. Lock is asserted to request complete ownership of the
bus. After the transfer starts, the INTERCON does not grant the bus to any
other master until the current master negates LOCK_O or CYC_O.

CYC_O
The cycle output CYC_O, when asserted, indicates that a valid bus cycle is in
progress. The signal is asserted for the duration of all bus cycles. For
example, during a BLOCK transfer cycle there can be multiple data transfers.
The CYC_O signal is asserted during the first data transfer and remains
asserted until the last data transfer. The CYC_O signal is useful for interfaces
with multi-port interfaces, such as dual-port memories. In these cases, the
CYC_O signal requests the use of a common bus from an arbiter.

STB_O
The strobe output STB_O indicates a valid data transfer cycle. It is used to
qualify various other signals on the interface, such as SEL_O(). The slave
asserts either the ACK_I, ERR_I, or RTY_I signals in response to every
assertion of the STB_O signal.

Slave Port and Signal Descriptions
This section describes the slave ports and signals listed in the Table 19.

ADR_I [31:2]
The address input array ADR_I() is used to pass a binary address. ADR_I()
actually has a full 32 bits. But, because all addressing is on DWORD (4-byte)
boundaries, the lowest two bits are always zero.

DAT_I [31:0]
The data input array DAT_I() is used to store a binary value for input.

DAT_O [31:0]
The data output array DAT_O() is used to store a binary value for output.

SEL_I [3:0]
The select input array SEL_I() indicates where valid data is placed on the
DAT_I() signal array during WRITE cycles and where it should be present on
the DAT_O() signal array during READ cycles. The array boundaries are
determined by the granularity of a port.

WISHBONE Interconnect Architecture Component Signals

LatticeMico32 Processor Reference Manual 45

WE_I
The write enable Input WE_I indicates whether the current local bus cycle is a
READ or WRITE cycle. The signal is negated during READ cycles and is
asserted during WRITE cycles.

ACK_O
The acknowledge output ACK_O, when asserted, indicates the termination of
a normal bus cycle by the slave. Also see the ERR_O and RTY_O signal
descriptions.

ERR_O
The error output ERR_O indicates an abnormal cycle termination by the
slave. The source of the error and the response generated by the master
depends on the master functionality. Also see the ACK_O and RTY_O signal
descriptions.

RTY_O
The retry output RTY_O indicates that the slave interface is not ready to
accept or send data, so the cycle should be retried. The core functionality
defines when and how the cycle is retried. Also see the ERR_O and RTY_O
signal descriptions.

CTI_I
For descriptions of the cycle-type identifier CTI_I(), see “CTI_IO()” on
page 40.

BTE_I [1:0]
For descriptions of the burst-type extension BTE_i(), see “BTE_IO()” on
page 41.

LOCK_I
The lock input LOCK_I, when asserted, indicates that the current bus cycle is
uninterruptible. A slave that receives the LOCK LOCK_I signal is accessed by
a single master only until either LOCK_I or CYC_I is negated.

CYC_I [2:0]
The Cycle Input CYC_I, when asserted, indicates that a valid bus cycle is in
progress. The signal is asserted for the duration of all bus cycles. For
example, during a BLOCK transfer cycle there can be multiple data transfers.
The CYC_I signal is asserted during the first data transfer and remains
asserted until the last data transfer.

STB_I
The strobe input STB_I, when asserted, indicates a valid data transfer cycle.
A slave responds to other WISHBONE signals only when this STB_I is
asserted, except for the RST_I signal, to which it should always respond. The
slave asserts either the ACK_O, ERR_O, or RTY_O signals in response to
every assertion of the STB_I signal.

WISHBONE Interconnect Architecture Arbitration Schemes

LatticeMico32 Processor Reference Manual 46

Arbitration Schemes
MSB supports the following arbitration schemes for platform generation:

Shared-bus arbitration schemes

Slave-side fixed arbitration schemes

Slave-side round-robin arbitration schemes

Shared-Bus Arbitration
The shared-bus arbitration scheme is shown in Figure 22.

In the shared-bus arbitration scheme, one or more bus masters and bus
slaves connect to a shared bus. A single arbiter controls the bus, that is, the
path between masters and slaves. Each bus master requests control of the
bus from the arbiter, and the arbiter grants access to a single master at a time.
Once a master has control of the bus, it performs transfers with a bus slave. If
multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master according to fixed arbitration
rules, forcing all other masters to wait.

Slave-Side Arbitration
Slave-side arbitration is shown in Figure 23.

Figure 22: Bus Architecture with Shared-Bus Arbitration

UART Memory

Master 2
DMA

Master 1
CPU

Shared-bus arbiter

WISHBONE bus

GPIO

Masters

Slaves

WISHBONE Interconnect Architecture Arbitration Schemes

LatticeMico32 Processor Reference Manual 47

In slave-side arbitration, each multi-master slave has its own arbiter. A master
port never waits to access a slave port, unless a different master port attempts
to access the same slave port at the same time. As a result, multiple master
ports active at the same time simultaneously transfer data with independent
slave ports.

In the slave-side arbitration scheme, arbitation is only required when two or
more masters contend for the same slave port. This scheme is called slave-
side arbitration because it is implemented when two or more masters connect
to a single slave.

Slave-Side Fixed Arbitration
In the slave-side fixed arbitration scheme, when two or more masters request
control of the bus for the same slave simultaneously, the master with the
highest priority gains access to the bus. At every slave transfer, only
requesting masters are included in the arbitration. The master with the highest
priority is granted access to the bus.

Slave-Side Round-Robin Arbitration
In the slave-side round-robin arbitration scheme, when multiple masters
contend for access to a slave port, the arbiter grants access to the bus in
round-robin order. At every slave transfer, only requesting masters are
included in the round-robin arbitration.

Figure 23: Bus Architecture with Slave-Side Arbitration

GPIO

Master 2Master 1

Memory

Arbiter

UART GPIO

WISHBONE Interconnect Architecture Arbitration Schemes

LatticeMico32 Processor Reference Manual 48

LatticeMico32 Processor Reference Manual 49

5
Instruction Set

This chapter includes descriptions of all of the instruction opcodes of the
LatticeMico32 processor.

Instruction Formats
All LatticeMico32 instructions are 32 bits wide. They are in four basic formats,
as shown in Figure 24 through Figure 27.

Figure 24: Register Immediate (RI) Format

Figure 25: Register Register (RR) Format

Figure 26: Control Register (CR) Format

Figure 27: Immediate (I) Format

Instruction Set Opcode Look-Up Table

LatticeMico32 Processor Reference Manual 50

Opcode Look-Up Table
Opcode Decimal Hexadecimal Mnemonic Opcode Decimal Hexadecimal Mnemonic

000000 00 00 srui 100000 32 20 sru

000001 01 01 nori 100001 33 21 nor

000010 02 02 muli 100010 34 22 mul

000011 03 03 sh 100011 35 23 divu

000100 04 04 lb 100100 36 24 rcsr

000101 05 05 sri 100101 37 25 sr

000110 06 06 xori 100110 38 26 xor

000111 07 07 lh 100111 39 27 div

001000 08 08 andi 101000 40 28 and

001001 09 09 xnori 101001 41 29 xnor

001010 10 0A lw 101010 42 2A reserved

001011 11 0B lhu 101011 43 2B raise

001100 12 0C sb 101100 44 2C sextb

001101 13 0D addi 101101 45 2D add

001110 14 0E ori 101110 46 2E or

001111 15 0F sli 101111 47 2F sl

010000 16 10 lbu 110000 48 30 b

010001 17 11 be 110001 49 31 modu

010010 18 12 bg 110010 50 32 sub

010011 19 13 bge 110011 51 33 reserved

010100 20 14 bgeu 110100 52 34 wcsr

010101 21 15 bgu 110101 53 35 mod

010110 22 16 sw 110110 54 36 call

010111 23 17 bne 110111 55 37 sexth

011000 24 18 andhi 111000 56 38 bi

011001 25 19 cmpei 111001 57 39 cmpe

011010 26 1A cmpgi 111010 58 3A cmpg

011011 27 1B cmpgei 111011 59 3B cmpge

011100 28 1C cmpgeui 111100 60 3C cmpgeu

011101 29 1D cmpgui 111101 61 3D cmpgu

011110 30 1E orhi 111110 62 3E calli

011111 31 1F cmpnei 111111 63 3F cmpne

Instruction Set Pseudo-Instructions

LatticeMico32 Processor Reference Manual 51

Pseudo-Instructions
To aid the semantics of assembler programs, the LatticeMico32 assembler
implements a variety of pseudo-instructions. Table 20 lists these instructions
and to what actual instructions they are mapped. Disassemblers show the
actual implementation.

Instruction Descriptions
Some of the following tables include these parameters:

Syntax – Describes the assembly language syntax for the instruction.

Issue – The “issue” cycles mean the number of cycles that the
microprocessor takes to place this instruction in the pipeline. For example,
if the issue is 1 cycle, the next instruction will be introduced into the
pipeline the very next cycle. If the issue is 4, the next instruction will be
introduced three cycles later. The branches and calls are issue 4 cycles,
which means that the pipeline stalls for the next three cycles.

Semantics – Describes how the instruction creates a result from the inputs
and where it puts the result. The Semantics feature refers to terms used in
the assembly language syntax for the instruction.

The Semantics feature also uses the following terms:

gpr – Refers to a general-purpose register.

PC – Refers to a program counter.

csr – Refers to a control and status register.

IE.BIE – Refers to the BIE bit of the IE (interrupt enable) register.

IE.IE – Refers to the IE bit of the IE (interrupt enable) register.

IE.EIE – Refers to the EIE bit of the IE (interrupt enable) register.

Table 20: Pseudo-Instructions

Mnemonic Implementation Description

ret b ra Returns from function call.

mv rX, rY or rX, rY, r0 Moves value in rY to rX.

mvhi rX, imm16 orhi rX, r0, imm16 Moves the 16-bit, left-shifted immediate into rX.

not rX, rY xnor rX, rY, r0 Is the bitwise complement of the value in rY and
stores the result in rX.

mvi addi rd, r0, imm16 Adds 16-bit immediate to r0 and stores the
result in rd.

Note: GCC compiler tool chain expects r0
contents to be zero.

nop addi r0, r0, 0 Adds 0 to r0 and saves it to r0, resulting in no
operation (nop).

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 52

EBA – See “EBA – Exception Base Address” on page 13.

DEBA – See “DEBA – Debug Exception Base Address” on page 29.

DC.RE – Refers to the RE bit of DC register. The DC register is an
internal microprocessor register that is statically set to 0. It cannot be
changed through the microprocessor configuration graphical user
interface or parameter settings.

Result – Specifies how many clock cycles before the result of the
instruction is available. The exact result depends on the instruction. For
example, for an add instruction, the result is the value produced by adding
the two operands. For a load instruction, the result is the value loaded
from memory.

add

addi

Figure 28: add Instruction

Table 21: add Instruction Features

Feature Description

Operation Integer addition

Description Adds the value in rY to the value in rZ, storing the result in rX.

Syntax add rX, rY, rZ

Example add r14, r15, r17

Semantics gpr[rX] = gpr[rY] + gpr[rZ]

Result 1 cycle

Issue 1 cycle

See Also addi, addition with immediate

Figure 29: addi Instruction

Table 22: addi Instruction Features

Feature Description

Operation Integer addition with immediate

Description Adds the value in rY to the sign-extended immediate, storing the result
in rX.

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 53

and

andhi

Syntax addi rX, rY, imm16

Example addi r4, r2, -32

Semantics gpr[rX] = gpr[rY] + sign_extend(imm16)

Result 1 cycle

Issue 1 cycle

See Also add, addition between registers

Table 22: addi Instruction Features

Feature Description

Figure 30: and Instruction

Table 23: and Instruction Features

Feature Description

Operation Bitwise logical AND

Description Bitwise AND of the value in rY with the value in rZ, storing the result in
rX.

Syntax and rX, rY, rZ

Example and r14, r15, r17

Semantics gpr[rX] = gpr[rY] & gpr[rZ]

Result 1 cycle

Issue 1 cycle

See Also andi, AND with immediate; andhi, AND with high 16 bits

Figure 31: andhi Instruction

Table 24: andhi Instruction Features

Feature Description

Operation Bitwise logical AND (high 16-bits)

Description Bitwise AND of the value in rY with the 16-bit, left-shifted immediate,
storing the result in rX.

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 54

andi

b

Syntax andhi rX, rY, imm16

Example andhi r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] & (imm16 << 16)

Result 1 cycle

Issue 1 cycle

See Also AND between registers; andi, AND with immediate

Table 24: andhi Instruction Features

Feature Description

Figure 32: andi Instruction

Table 25: andi Instruction Features

Feature Description

Operation Bitwise logical AND

Description Bitwise AND of the value in rY with the zero-extended immediate,
storing the result in rX.

Syntax andi rX, rY, imm16

Example andi r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] & zero_extend(imm16)

Result 1 cycle

Issue 1 cycle

See Also and, AND between registers; andhi, AND with high 16 bits

Figure 33: b Instruction

Table 26: b Instruction Features

Feature Description

Operation Unconditional branch

Description Unconditional branch to address in rX. rX cannot be r30 (ea) or r31
(ba).

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 55

be

bg

Syntax b rX

Example b r3

Semantics PC = gpr[rX]

Issue 4 cycles

See Also bi, branch with immediate

Table 26: b Instruction Features

Feature Description

Figure 34: be Instruction

Table 27: be Instruction Features

Feature Description

Operation Branch if equal

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
values are equal.

Syntax be rX, rY, imm16

Example be r4, r2, label

Semantics if (gpr[rX] == gpr[rY])
PC = PC + sign_extend(imm16 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also bne, branch if not equal

Figure 35: bg Instruction

Table 28: bg Instruction Features

Feature Description

Operation Branch if greater

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater than the value in rY. The values in rX and rY are
treated as signed integers.

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 56

bge

bgeu

Syntax bg rX, rY, imm16

Example bg r4, r2, label

Semantics if (gpr[rX] > gpr[rY])
PC = PC + sign_extend(imm16 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also bgu, branch if greater, unsigned

Table 28: bg Instruction Features

Feature Description

Figure 36: bge Instruction

Table 29: bge Instruction Features

Feature Description

Operation Branch if greater or equal

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater or equal to the value in rY. The values in rX and rY
are treated as signed integers.

Syntax bge rX, rY, imm16

Example bge r4, r2, label

Semantics if (gpr[rX] >= gpr[rY])
PC = PC + sign_extend(imm16 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also bgeu, branch if greater or equal, unsigned

Figure 37: bgeu Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 57

bgu

bi

Table 30: bgeu Instruction Features

Feature Description

Operation Branch if greater or equal, unsigned

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater or equal to the value in rY. The values in rX and rY
are treated as unsigned integers.

Syntax bgeu rX, rY, imm16

Example bgeu r4, r2, label

Semantics if (gpr[rX] >= gpr[rY])
PC = PC + sign_extend(imm16 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also bge, branch if greater or equal, signed

Figure 38: bgu Instruction

Table 31: bgu Instruction Features

Feature Description

Operation Branch if greater, unsigned

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater than the value in rY. The values in rX and rY are
treated as unsigned integers.

Syntax bgu rX, rY, imm16

Example bgu r4, r2, label

Semantics if (gpr[rX] > gpr[rY])
PC = PC + sign_extend(imm16 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also bg, branch if greater, signed

Figure 39: bi Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 58

bne

break

Table 32: bi Instruction Features

Feature Description

Operation Unconditional branch

Description Unconditional branch to the address given by the sum of the PC and the
sign-extended immediate.

Syntax bi imm26

Example bi label

Semantics PC = PC + sign_extend(imm26 << 2)

Issue 4 cycles

See Also b, branch from register

Figure 40: bne Instruction

Table 33: bne Instruction Features

Feature Description

Operation Branch if not equal

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
values are not equal.

Syntax bne rX, rY, imm16

Example bne r4, r2, label

Semantics if (gpr[rX] != gpr[rY])
PC = PC + sign_extend(imm16 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also be, branch if equal

Figure 41: break Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 59

bret

call

Table 34: break Instruction Features

Feature Description

Operation Software breakpoint

Description Raises a breakpoint exception.

Syntax break

Example break

Semantics gpr[ba] = PC
IE.BIE = IE.IE
IE.IE = 0
PC = DEBA + ID * 32

Issue 4 cycles

See Also bret, return from breakpoint

Figure 42: bret Instruction

Table 35: bret Instruction Features

Feature Description

Operation Return from breakpoint

Description Unconditional branch to the address in the breakpoint address register
(ba), updating interrupt enable with value saved in breakpoint interrupt
enable register.

Syntax bret

Example bret

Semantics PC = gpr[ba]
IE.IE = IE.BIE

Issue 4 cycles

See Also break, breakpoint

Figure 43: call Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 60

calli

cmpe

Table 36: call Instruction Features

Feature Description

Operation Function call

Description Adds 4 to the PC, storing the result in ra, then unconditionally branches
to the address in rX.

Syntax call rX

Example call r3

Semantics gpr[ra] = PC + 4
PC = gpr[rX]

Result 1 cycle

Issue 4 cycles

See Also calli, call with immediate; ret, return from call

Figure 44: calli Instruction

Table 37: calli Instruction Features

Feature Description

Operation Function call

Description Adds 4 to the PC, storing the result in ra, then unconditionally branches
to the address given by the sum of the PC and the sign-extended
immediate.

Syntax calli imm26

Example calli label

Semantics gpr[ra] = PC + 4
PC = PC + sign_extend(imm26 << 2)

Result 1 cycle

Issue 4 cycles

Latency 4 cycles

See Also call, call from register; ret, return from call

Figure 45: cmpe Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 61

cmpei

cmpg

Table 38: cmpe Instruction Features

Feature Description

Operation Compare equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if they are
equal, otherwise 0.

Syntax cmpe rX, rY, rZ

Example cmpe r14, r15, r17

Semantics gpr[rX] = gpr[rY] == gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also cmpei, compare equal with immediate

Figure 46: cmpei Instruction

Table 39: cmpei Instruction Features

Feature Description

Operation Compare equal

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if they are equal, 0 otherwise.

Syntax cmpei rX, rY, imm16

Example cmpei r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] == sign_extend(imm16)

Result 2 cycles

Issue 1 cycle

See Also cmpe, compare equal between registers

Figure 47: cmpg Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 62

cmpgi

cmpge

Table 40: cmpg Instruction Features

Feature Description

Operation Compare greater

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater than the value in rZ, 0 otherwise. Both operands are
treated as signed integers.

Syntax cmpg rX, rY, rZ

Example cmpg r14, r15, r17

Semantics gpr[rX] = gpr[rY] > gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also cmpgi, compare greater with immediate; cmpgu, compare greater,
unsigned; cmpgui, compare greater with immediate, unsigned

Figure 48: cmpgi Instruction

Table 41: cmpgi Instruction Features

Feature Description

Operation Compare greater

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if the value in rY is greater than the immediate, 0 otherwise. Both
operands are treated as signed integers.

Syntax cmpgi rX, rY, imm16

Example cmpgi r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] > sign_extend(imm16)

Result 2 cycles

Issue 1 cycle

See Also cmpg, compare greater between registers; cmpgu, compare greater,
unsigned; cmpgui, compare greater with immediate, unsigned

Figure 49: cmpge Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 63

cmpgei

cmpgeu

Table 42: cmpge Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater or equal to the value in rZ, 0 otherwise. Both operands
are treated as signed integers.

Syntax cmpge rX, rY, rZ

Example cmpge r14, r15, r17

Semantics gpr[rX] = gpr[rY] >= gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also cmpgei, compare with immediate; cmpgeu, compare, unsigned;
cmpgeui, compare with immediate, unsigned

Figure 50: cmpgei Instruction

Table 43: cmpgei Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if the value in rY is greater or equal to the immediate, 0 otherwise.
Both operands are treated as signed integers.

Syntax cmpgei rX, rY, imm16

Example cmpgei r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] >= sign_extend(imm16)

Result 2 cycles

Issue 1 cycle

See Also cmpge, compare between registers; cmpgeu, compare, unsigned;
cmpgeui, compare with immediate, unsigned

Figure 51: cmpgeu Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 64

cmpgeui

cmpgu

Table 44: cmpgeu Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater or equal to the value in rZ, 0 otherwise. Both operands
are treated as unsigned integers.

Syntax cmpgeu rX, rY, rZ

Example cmpgeu r14, r15, r17

Semantics gpr[rX] = gpr[rY] >= gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also cmpge, compare between registers; cmpgei, compare with immediate;
cmpgeui, compare with immediate, unsigned

Figure 52: cmpgeui Instruction

Table 45: cmpgeui Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the zero-extended immediate, storing 1 in
rX if the value in rY is greater or equal to the immediate, 0 otherwise.
Both operands are treated as unsigned integers.

Syntax cmpgeui rX, rY, imm16

Example cmpgeui r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] >= zero_extend(imm16)

Result 2 cycles

Issue 1 cycle

See Also cmpge, compare between registers; cmpgei, compare with immediate;
cmpgeu, compare, unsigned

Figure 53: cmpgu Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 65

cmpgui

cmpne

Table 46: cmpgu Instruction Features

Feature Description

Operation Compare greater unsigned

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater than the value in rZ, 0 otherwise. Both operands are
treated as unsigned integers.

Syntax cmpgu rX, rY, rZ

Example cmpgu r14, r15, r17

Semantics gpr[rX] = gpr[rY] > gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also cmpg, compare greater, signed; cmpgi, compare greater with
immediate; cmpgui, compare greater with immediate, unsigned

Figure 54: cmpgui Instruction

Table 47: cmpgui Instruction Features

Feature Description

Operation Compare greater unsigned

Description Compares the value in rY with the zero-extended immediate, storing 1 in
rX if the value in rY is greater than the immediate, 0 otherwise. Both
operands are treated as unsigned integers.

Syntax cmpgui rX, rY, imm16

Example cmpgui r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] > zero_extend(imm16)

Result 2 cycles

Issue 1 cycle

See Also cmpg, compare greater, signed; cmpgi, compare greater with
immediate; cmpgu, compare greater, unsigned

Figure 55: cmpne Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 66

cmpnei

divu

Table 48: cmpne Instruction Features

Feature Description

Operation Compare not equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if they are
not equal, 0 otherwise.

Syntax cmpne rX, rY, rZ

Example cmpne r14, r15, r17

Semantics gpr[rX] = gpr[rY] != gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also cmpnei, compare not equal with immediate

Figure 56: cmpnei Instruction

Table 49: cmpnei Instruction Features

Feature Description

Operation Compare not equal

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if they are not equal, 0 otherwise.

Syntax cmpnei rX, rY, imm16

Example cmpnei r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] != sign_extend(imm16)

Result 2 cycles

Issue 1 cycle

See Also cmpne, compare not equal between registers

Figure 57: divu Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 67

eret

lb

Table 50: divu Instruction Features

Feature Description

Operation Unsigned iinteger division

Description Divides the value in rY by the value in rZ, storing the quotient in rX. Both
operands are treated as unsigned integers.

Available only if the processor was configured with the
DIVIDE_ENABLED option.

Syntax divu rX, rY, rZ

Example divu r14, r15, r17

Semantics gpr[rX] = gpr[rY] / gpr[rZ]

Result 34 cycles

Issue 34 cycles

See Also modu, modulus

Figure 58: eret Instruction

Table 51: eret Instruction Features

Feature Description

Operation Return from exception

Description Unconditionally branches to the address in the exception address
register (ea), updating interrupt enable with value saved in exception
interrupt enable register.

Syntax eret

Example eret

Semantics PC = gpr[ea]
IE.IE = IE.EIE

Result

Issue 3 cycles

See Also scall, system call

Figure 59: lb Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 68

lbu

lh

Table 52: lb Instruction Features

Feature Description

Operation Load byte from memory

Description Loads a byte from memory at the address specified by the sum of the
value in rY added to the sign-extended immediate, storing the sign-
extended result into rX.

Syntax lb rX, (rY+imm16)

Example lb r4, (r2+5)

Semantics address = gpr[rY] + sign_extend(imm16)
gpr[rX] = sign_extend(memory[address])

Result 3 cycles

Issue 1 cycle

See Also lbu, load byte, unsigned; lh, load half-word, signed; lhu, load half-word,
unsigned; lw, load word

Figure 60: lbu Instruction

Table 53: lbu Instruction Features

Feature Description

Operation Load unsigned byte from memory

Description Loads a byte from memory at the address specified by the sum of the
value in rY added to the sign-extended immediate, storing the zero-
extended result into rX.

Syntax lbu rX, (rY+imm16)

Example lbu r4, (r2+5)

Semantics address = gpr[rY] + sign_extend(imm16)
gpr[rX] = zero_extend(memory[address])

Result 3 cycles

Issue 1 cycle

See Also lb, load byte, signed; lh, load half-word, signed; lhu, load half-word,
unsigned; lw, load word

Figure 61: lh Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 69

lhu

lw

Table 54: lh Instruction Features

Feature Description

Operation Load half-word from memory

Description Loads a half-word from memory at the address specified by the sum of
the value in rY added to the sign-extended immediate, storing the sign-
extended result into rX.

Syntax lh rX, (rY+imm16)

Example lh r4, (r2+6)

Semantics address = gpr[rY] + sign_extend(imm16)
gpr[rX] = sign_extend((memory[address] << 8)

| (memory[address+1]))

Result 3 cycles

Issue 1 cycle

See Also lb, load byte, signed; lbu, load byte, unsigned; lhu, load half-word,
unsigned; lw, load word

Figure 62: lhu Instruction

Table 55: lhu Instruction Features

Feature Description

Operation Load unsigned half-word from memory

Description Loads a half-word from memory at the address specified by the sum of
the value in rY added to the sign-extended immediate, storing the zero-
extended result into rX.

Syntax lhu rX, (rY+imm16)

Example lhu r4, (r2+6)

Semantics address = gpr[rY] + sign_extend(imm16)
gpr[rX] = zero_extend((memory[address] << 8)

| (memory[address+1]))

Result 3 cycles

Issue 1 cycle

See Also lb, load byte, signed; lbu, load byte, unsigned; lh, load half-word, signed;
lw, load word

Figure 63: lw Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 70

modu

Table 56: lw Instruction Features

Feature Description

Operation Load word from memory

Description Loads a word from memory at address specified by the sum of the value
in rY added to the sign-extended immediate, storing the result in rX.

Syntax lw rX, (rY+imm16)

Example lw r4, (r2+8)

Semantics address = gpr[rY] + sign_extend(imm16)
gpr[rX] = (memory[address] << 24)

| (memory[address+1] << 16)
| (memory[address+2] << 8)
| (memory[address+3])

Result 3 cycles

Issue 1 cycle

See Also lb, load byte, signed; lbu, load byte, unsigned; lh, load half-word, signed;
lhu, load half-word, unsigned

Figure 64: modu Instruction

Table 57: modu Instruction Features

Feature Description

Operation Unsigned integer modulus

Description Divides the value in rY by the value in rZ, storing the remainder in rX.
Both operands are treated as unsigned integers.

Available only if the processor was configured with the
DIVIDE_ENABLED option.

Syntax modu rX, rY, rZ

Example modu r14, r15, r17

Semantics gpr[rX] = gpr[rY] % gpr[rZ]

Result 34 cycles

Issue 34 cycles

See Also divu, divide

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 71

mul

muli

Figure 65: mul Instruction

Table 58: mul Instruction Features

Feature Description

Operation Integer multiply

Description Multiplies the value in rY by the value in rZ, storing the low 32 bits of the
product in rX.

Available only if the processor was configured with either the
MC_MULTIPLY_ENABLED or PL_MULTIPLY_ENABLED option.

Syntax mul rX, rY, rZ

Example mul r14, r15, r17

Semantics gpr[rX] = gpr[rY] * gpr[rZ]

Result 3 cycles

Issue 1 cycle

See Also muli, multiply with immediate

Figure 66: muli Instruction

Table 59: muli Instruction Features

Feature Description

Operation Integer multiply

Description Multiplies the value in rY by the sign-extended immediate, storing the
low 32 bits of the product in rX.

Available only if the processor was configured with either the
MC_MULTIPLY_ENABLED or PL_MULTIPLY_ENABLED option.

Syntax muli rX, rY, imm16

Example muli r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] * sign_extend(imm16)

Result 3 cycles

Issue 1 cycle

See Also mul, multiply between registers

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 72

mv

mvhi

Feature Description

Operation Move

Description Moves the value in rY to rX.

This is a pseudo-instruction implemented with: or rX, rY, r0.

Syntax mv rX, rY

Example mv r4, r2

Semantics gpr[rX] = gpr[rY] | gpr[r0]

Result 1 cycle

Issue 1 cycle

See Also mvhi, move immediate into high 16 bits

Feature Description

Operation Move high 16 bits

Description Moves the 16-bit, left-shifted immediate into rX.

This is a pseudo-instruction implemented with: orhi rX, r0, imm16.

Syntax mvhi rX, imm16

Example mvhi r4, 0x5555

Semantics gpr[rX] = gpr[r0] | (imm16 << 16)

Result 1 cycle

Issue 1 cycle

See Also mv, move between registers

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 73

nor

nori

Figure 67: nor Instruction

Table 60: nor Instruction Features

Feature Description

Operation Bitwise logical NOR

Description Bitwise NOR of the value in rY with the value in rZ, storing the result in
rX.

Syntax nor rX, rY, rZ

Example nor r14, r15, r17

Semantics gpr[rX] = ~(gpr[rY] | gpr[rZ])

Result 1 cycle

Issue 1 cycle

See Also nori, NOR with immediate

Figure 68: nori Instruction

Table 61: nori Instruction Features

Feature Description

Operation Bitwise logical NOR

Description Bitwise NOR of the value in rY with the zero-extended immediate,
storing the result in rX.

Syntax nori rX, rY, imm16

Example nori r4, r2, 0x5555

Semantics gpr[rX] = ~(gpr[rY] | zero_extend(imm16))

Result 1 cycle

Issue 1 cycle

See Also nor, NOR between registers

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 74

not

or

Feature Description

Operation Bitwise complement

Description Bitwise complement of the value in rY, storing the result in rX.

This is a pseudo-instruction implemented with: xnor rX, rY, r0.

Syntax not rX, rY

Example not r4, r2

Semantics gpr[rX] = ~(gpr[rY] ^ gpr[r0])

Result 1 cycle

Issue 1 cycle

Figure 69: or Instruction

Table 62: or Instruction Features

Feature Description

Operation Bitwise logical OR

Description Bitwise OR of the value in rY with the value in rZ, storing the result in rX.

Syntax or rX, rY, rZ

Example or r14, r15, r17

Semantics gpr[rX] = gpr[rY] | gpr[rZ]

Result 1 cycle

Issue 1 cycle

See Also ori, OR with immediate; orhi, OR with high 16 bits

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 75

ori

orhi

Figure 70: ori Instruction

Table 63: ori Instruction Features

Feature Description

Operation Bitwise logical OR

Description Bitwise OR of the value in rY with the zero-extended immediate, storing
the result in rX.

Syntax ori rX, rY, imm16

Example ori r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] | zero_extend(imm16)

Result 1 cycle

Issue 1 cycle

See Also or, OR between registers; orhi, OR with high 16 bits

Figure 71: orhi Instruction

Table 64: orhi Instruction Features

Feature Description

Operation Bitwise logical OR (high 16-bits)

Description Bitwise OR of the value in rY with the 16-bit, left-shifted immediate,
storing the result in rX.

Syntax orhi rX, rY, imm16

Example orhi r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] | (imm16 << 16)

Result 1 cycle

Issue 1 cycle

See Also or, OR between registers; ori, OR with immediate

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 76

rcsr

ret

sb

Figure 72: rcsr Instruction

Table 65: rcsr Instruction Features

Feature Description

Operation Read control and status register

Description Reads the value of the specified control and status register and stores it
in rX.

Syntax rcsr rX, csr

Example rcsr r15, IM

Semantics gpr[rX] = csr

Result 1 cycle

Issue 1 cycle

See Also wcsr, write control and status register

Feature Description

Operation Return from function call

Description Unconditional branch to address in ra.

This is a pseudo-instruction implemented with: b ra.

Syntax ret

Example ret

Semantics PC = gpr[ra]

Result

Issue 4 cycles

See Also call, function call from register; calli, function call with immediate

Figure 73: sb Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 77

scall

sextb

Table 66: sb Instruction Features

Feature Description

Operation Store byte to memory

Description Stores the lower byte in rY into memory at the address specified by the
sum of the value in rX added to the sign-extended immediate.

Syntax sb(rX+imm16), rY

Example sb(r2+8), r4

Semantics address = gpr[rX] + sign_extend(imm16)
memory[address] = gpr[rY] & 0xff

Result

Issue 1 cycle

See Also sh, store half-word; sw, store word

Figure 74: scall Instruction

Table 67: scall Instruction Features

Feature Description

Operation System call

Description Raises a system call exception.

Syntax scall

Example scall

Semantics gpr[ea] = PC
IE.EIE = IE.IE
IE.IE = 0
PC = (DC.RE ? DEBA : EBA) + ID * 32

Result

Issue 4 cycles

See Also eret, return from exception

Figure 75: sextb Instruction

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 78

sexth

Table 68: sextb Instruction Features

Feature Description

Operation Sign-extend byte to word

Description Sign-extends the value in rY, storing the result in rX.

Available only if the processor was configured with the
SIGN_EXTEND_ENABLED option.

Syntax sextb rX, rY

Example sextb r14, r15

Semantics gpr[rX] = (gpr[rY] << 24) >> 24

Result 1 cycle

Issue 1 cycle

See Also sexth, sign-extend half-word

Figure 76: sexth Instruction

Table 69: sexth Instruction Features

Feature Description

Operation Sign-extends half-word to word

Description Sign-extends the value in rY, storing the result in rX.

Available only if the processor was configured with the
SIGN_EXTEND_ENABLED option.

Syntax sexth rX, rY

Example sexth r14, r15

Semantics gpr[rX] = (gpr[rY] << 16) >> 16

Result 1 cycle

Issue 1 cycle

See Also sextb, sign-extend byte

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 79

sh

sl

Figure 77: sh Instruction

Table 70: sh Instruction Features

Feature Description

Operation Store half-word to memory

Description Stores the lower half-word in rY into memory at the address specified by
the sum of the value in rX added to the sign-extended immediate.

Syntax sh (rX+imm16), rY

Example sh (r2+8), r4

Semantics address = gpr[rX] + sign_extend(imm16)
memory[address] = gpr[rY] & 0xff
memory[address+1] = (gpr[rY] >> 8) & 0xff

Result

Issue 1 cycle

See Also sb, store byte; sw, store word

Figure 78: sl Instruction

Table 71: sl Instruction Features

Feature Description

Operation Shift left

Description Shifts the value in rY left by the number of bits specified by the value in
rZ, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sl rX, rY, rZ

Example sl r14, r15, r17

Semantics gpr[rX] = gpr[rY] << (gpr[rZ] & 0x1f)

Result 2 cycles

Issue 1 cycle

See Also sli, shift left with immediate

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 80

sli

sr

Figure 79: sli Instruction

Table 72: sli Instruction Features

Feature Description

Operation Shift left

Description Shifts the value in rY left by the number of bits specified by the
immediate, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sli rX, rY, imm5

Example sli r4, r2, 17

Semantics gpr[rX] = gpr[rY] << imm5

Result 2 cycles

Issue 1 cycle

See Also sl, shift left from register

Figure 80: sr Instruction

Table 73: sr Instruction Features

Feature Description

Operation Shift right (arithmetic)

Description Shifts the signed value in rY right by the number of bits specified by the
value in rZ, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sr rX, rY, rZ

Example sr r14, r15, r17

Semantics gpr[rX] = gpr[rY] >> (gpr[rZ] & 0x1f)

Result 2 cycles

Issue 1 cycle

See Also sri, shift right with immediate; sru, shift right, unsigned; srui, shift right
with immediate, unsigned

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 81

sri

sru

Figure 81: sri Instruction

Table 74: sri Instruction Features

Feature Description

Operation Shift right (arithmetic)

Description Shifts the signed value in rY right by the number of bits specified by the
immediate, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sri rX, rY, imm5

Example sri r4, r2, 12

Semantics gpr[rX] = gpr[rY] >> imm5

Result 2 cycles

Issue 1 cycle

See Also sr, shift right from register; sru, shift right, unsigned; srui, shift right with
immediate, unsigned

Figure 82: sru Instruction

Table 75: sru Instruction Features

Feature Description

Operation Shift right, unsigned (logical)

Description Shifts the unsigned value in rY right by the number of bits specified by
the value in rZ, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sru rX, rY, rZ

Example sru r14, r15, r17

Semantics gpr[rX] = gpr[rY] >> (gpr[rZ] & 0x1f)

Result 2 cycles

Issue 1 cycle

See Also sr, shift right from register; sri, shift right with immediate; srui, shift right
with immediate, unsigned

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 82

srui

sub

Figure 83: srui Instruction

Table 76: srui Instruction Features

Feature Description

Operation Shifts right, unsigned (logical)

Description Shifts the unsigned value in rY right by the number of bits specified by
the immediate, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax srui rX, rY, imm5

Example srui r4, r2, 5

Semantics gpr[rX] = gpr[rY] >> imm5

Result 2 cycles

Issue 1 cycle

See Also sr, shift right from register; sri, shift right with immediate; sru, shift right,
unsigned

Figure 84: sub Instruction

Table 77: sub Instruction Features

Feature Description

Operation Integer subtraction

Description Subtracts the value in rZ from the value in rY, storing the result in rX.

Syntax sub rX, rY, rZ

Example sub r14, r15, r17

Semantics gpr[rX] = gpr[rY] - gpr[rZ]

Result 1 cycle

Issue 1 cycle

See Also addi, add with signed immediate

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 83

sw

wcsr

Figure 85: sw Instruction

Table 78: sw Instruction Features

Feature Description

Operation Store word to memory

Description Stores the value in rY into memory at the address specified by the sum
of the value in rX added to the sign-extended immediate.

Syntax sw(rX+imm16), rY

Example sw(r2+8), r4

Semantics address = gpr[rX] + sign_extend(imm16)
memory[address] = gpr[rY] & 0xff
memory[address+1] = (gpr[rY] >> 8) & 0xff
memory[address+2] = (gpr[rY] >> 16) & 0xff
memory[address+3] = (gpr[rY] >> 32) & 0xff

Result

Issue 1 cycle

See Also sb, store byte; sh, store half-word

Figure 86: wcsr Instruction

Table 79: wcsr Instruction Features

Feature Description

Operation Write control or status register

Description Writes the value in rX to the specified control or status register.

Syntax wcsr csr, rX

Example wcsr IM, r15

Semantics csr = gpr[rX]

Result 1 cycle

Issue 1 cycle

See Also rcsr, read control and status register

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 84

xnor

xnori

Figure 87: xnor Instruction

Table 80: xnor Instruction Features

Feature Description

Operation Bitwise logical exclusive-NOR

Description Bitwise exclusive-NOR of the value in rY with the value in rZ, storing the
result in rX.

Syntax xnor rX, rY, rZ

Example xnor r14, r15, r17

Semantics gpr[rX] = ~(gpr[rY] ^ gpr[rZ])

Result 1 cycle

Issue 1 cycle

See Also xnori, XNOR with immediate

Figure 88: xnori Instruction

Table 81: xnori Instruction Features

Feature Description

Operation Bitwise logical exclusive-NOR

Description Bitwise exclusive-NOR of the value in rY with the zero-extended
immediate, storing the result in rX.

Syntax xnori rX, rY, imm16

Example xnori r4, r2, 0x5555

Semantics gpr[rX] = ~(gpr[rY] ^ zero_extend(imm16))

Result 1 cycle

Issue 1 cycle

See Also xnor, XNOR between registers

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 85

xor

xori

Figure 89: xor Instruction

Table 82: xor Instruction Features

Feature Description

Operation Bitwise logical exclusive-OR

Description Bitwise exclusive-OR of the value in rY with the value in rZ, storing the
result in rX.

Syntax xor rX, rY, rZ

Example xor r14, r15, r17

Semantics gpr[rX] = gpr[rY] ^ gpr[rZ]

Result 1 cycle

Issue 1 cycle

See Also xori, XOR with immediate

Figure 90: xori Instruction

Table 83: xori Instruction Features

Feature Description

Operation Bitwise logical exclusive-OR

Description Bitwise exclusive-OR of the value in rY with the zero-extended
immediate, storing the result in rX.

Syntax xori rX, rY, imm16

Example xori r4, r2, 0x5555

Semantics gpr[rX] = gpr[rY] ^ zero_extend(imm16)

Result 1 cycle

Issue 1 cycle

See Also xori, XOR between registers

Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 86

LatticeMico32 Processor Reference Manual 87

Index

A
A field 30
ACK 20
ACK_I 43
ACK_O 45
Acknowledge Input 43
Acknowledge Output 45
add instruction 52
addi instruction 52
address alignment 15
Address Input array 44
Address Output array 43
Address pipeline stage 5
address space 14
ADR_I() 44
ADR_O() 43
and instruction 53
andhi instruction 53
andi instruction 54
arbitration schemes 46
arithmetic instructions 31
associativity in caches 16

B
b instruction 54
ba register 7
be instruction 55
bg instruction 55
bge instruction 56
bgeu instruction 56
bgu instruction 57
bi instruction 57
BIE field 10
big-endian 14
bne instruction 58

BP field 12
BP registers 27, 28, 30
break instruction 58
breakpoint address register 7
breakpoint exceptions 20, 21, 23, 27
breakpoint registers 27, 28, 30
bret instruction 59
BTE_I() 41
BTE_O() 41
burst type extension 41
bypass in pipeline 5

C
cache configurations 17, 38
cacheable addresses 14
caches 16, 38
call instruction 59
calli instruction 60
CC field 12
CC register 9, 12
CFG register 9, 12
cmpe instruction 60
cmpei instruction 61
cmpg instruction 61
cmpge instruction 62
cmpgei instruction 63
cmpgeu instruction 63
cmpgeui instruction 64
cmpgi instruction 62
cmpgu instruction 64
cmpgui instruction 65
cmpne instruction 65
cmpnei instruction 66
comparison instructions 32
component signals

Index

LatticeMico32 Processor Reference Manual 88

introduction to 42
master signals 43
slave signals 44

configuration options 35
configuration register 9, 12
control and status registers

configuration 9, 12
cycle counter 9, 12
data cache control 9, 12
exception base address 9, 13, 26
instruction cache control 9, 11
interrupt enable 9, 10
interrupt mask 9, 11
interrupt pending 9, 11
introduction 9
program counter 9

CR format for instructions 49
CTI_I() 40
CTI_O() 40
CYC_I 45
CYC_O 44
cycle counter 9, 12
Cycle Input 45
Cycle Output 44
cycle type identifier 40
CYCLE_COUNTER_ENABLED 36

D
D field 12
DAT_I() 43, 44
DAT_O() 43, 44
data cache control 9, 12
Data Input array 43, 44
Data Output array 43, 44
data transfer instructions 32
data types 6
DataBusError 20, 21, 23
DC field 12
DC register 28, 29
DCACHE_ASSOCIATIVITY 37
DCACHE_BASE_ADDRESS 37
DCACHE_BYTES_PER_LINE 37
DCACHE_ENABLED 37
DCACHE_LIMIT 37
DCACHE_SETS 37
DCC register 9, 12
DEBA register 28, 29
debug 28, 38
debug control 28, 29
debug control and status registers 28
debug exception base aAddress 28
debug exception base address 29
debug exceptions 21
debug monitor 22
DEBUG_ENABLED 36, 38
decode pipeline stage 5
DIVIDE_ENABLED 35
DivideByZero 20, 24

divu instruction 66

E
E field 30
ea register 7
EBA register 9, 13, 26
EBR 38
EIE field 10
embedded block RAM 38
endianness 14
eret instruction 67
ERR_I 43
ERR_O 45
Error Input 43
Error Output 45
exception address register 7
exception base address 9, 13, 26
exceptions

breakpoints 27
debug 21
handlers 22
interrupts 22, 26
introduction to 20
nested 26
non-debug 21
processing 21
reset 26
watchpoints 27

execute pipeline stage 5
extended data types 7

F
F field in JTAG UART Receive Register 30
F field in JTAG UART Transmit Register 29
fetch pipeline stage 5
fixed slave-side arbitration scheme 47
fp register 9, 15
frame pointer 9, 15

G
G field 12
general-purpose registers 7
global pointer 8
gp register 8

H
H field 12
handlers, exceptions 22

I
I bit in data cache control 12
I bit in instruction cache control 11
I format for instructions 49
IC field 12
ICACHE_ASSOCIATIVITY 37
ICACHE_BASE_ADDRESS 37
ICACHE_BYTES_PER_LINE 37
ICACHE_ENABLED 36

Index

LatticeMico32 Processor Reference Manual 89

ICACHE_LIMIT 37
ICACHE_SETS 37
ICC register 9, 11
IE field 10
IE register 9, 10
IM register 9, 11
initializing caches 17
inline memories 18
instruction cache control 9, 11
instruction set

categories 31
descriptions 51

add 52
addi 52
and 53
andhi 53
andi 54
b 54
be 55
bg 55
bge 56
bgeu 56
bgu 57
bi 57
bne 58
break 58
bret 59
call 59
calli 60
cmpe 60
cmpei 61
cmpg 61
cmpge 62
cmpgei 63
cmpgeu 63
cmpgeui 64
cmpgi 62
cmpgu 64
cmpgui 65
cmpne 65
cmpnei 66
divu 66
eret 67
lb 67
lbu 68
lhu 68, 69
lw 69
modu 70
mul 71
muli 71
mv 72
mvh 72
nor 73
nori 73
not 74
or 74
orhi 75
ori 75
rcsr 76

ret 76
sb 76
scall 77
sextb 77
sexth 78
sh 79
sl 79
sli 80
sr 80
sri 81
sru 81
srui 82
sub 82
sw 83
wcsr 83
xnor 84
xnori 84
xor 85
xori 85

formats 49
opcodes 50
pseudo-instructions 51

InstructionBusError 20, 23
INT field 12
interconnect architecture see WISHBONE

interconnect
interlock in pipeline 5
Interrupt 21, 22, 24, 26
interrupt enable 10
interrupt mask 9, 11
interrupt pending 9, 11
interrupt renable 9
invalidating caches 17
IP register 9, 11

J
J field 12
JRX register 28, 30
JTAG UART Receive Register 28, 30
JTAG UART Transmit Register 29
JTAG UART transmit register 28
JTX register 28, 29

L
lb instruction 67
lbu instruction 68
lh instruction 68
lhu instruction 69
lines in caches 16
Lock Input 45
Lock Output 44
LOCK_I 45
LOCK_O 44
logic instructions 31
lw instruction 69

M
M field 12

Index

LatticeMico32 Processor Reference Manual 90

master signals 43
memory architecture

address alignment 15
address space 14
cacheable addresses 14
endianness 14
exceptions 20
stack layout 15

memory pipeline stage 5
model, programmer’s 5
modu instruction 70
monitor, debug 22
mul instruction 71
muli instruction 71
mv instruction 72
mvh instruction 72

N
nested exceptions 26
non-debug exceptions 21
nor instruction 73
nori instruction 73
not instruction 74

O
opcodes 50
OPENCORES.ORG 39
or instruction 74
orhi instruction 75
ori instruction 75

P
PC register 9
pipeline 5, 21
processing exceptions 21
program counter 9
program flow control instructions 32
programmer’s model 5
pseudo-instructions 51

R
R field 12
r0 register 7
ra register 7
rcsr instruction 76
read-miss 16
registered feedback mode 40
registers

control and status 9
debug control and status 28
general-purpose 7

reset 20, 23, 26
resources 38
ret instruction 76
Retry Input 43
Retry Output 45
return address register 7
REV field 12

RI format for instructions 49
round-robin slave-side arbitration scheme 47
RR format for instructions 49
RTY_I 43
RTY_O 45
RXD field 30

S
S field 12
sb instruction 76
scall instruction 77
SEL_I() 44
SEL_O() 43
Select Input array 44
Select Output array 43
sextb instruction 77
sexth instruction 78
sh instruction 79
shared-bus arbitration scheme 46
shift instructions 32
SIGN_EXTEND_ENABLED 36
signals, component 42
sl instruction 79
slave signals 44
slave-side arbitration scheme 46

fixed 47
round-robin 47

sli instruction 80
SoC Interconnection Architecture for Portable IP

Cores see WISHBONE interconnect
sp register 9, 15
sr instruction 80
sri instruction 81
sru instruction 81
srui instruction 82
stack layout 15
stack pointer 9, 15
stages in pipeline 5
STB_I 45
STB_O 44
Strobe Input 45
Strobe Output 44
sub instruction 82
sw instruction 83
SystemCall 21, 24
System-on-Chip Interconnection Architecture for

Portable IP Cores see WISHBONE
interconnect

T
TXD field 29

W
watchpoint exceptions 20, 21, 23, 27
Watchpoint registers 27, 31
watchpoint registers 28
ways in caches 16
wcsr instruction 83

Index

LatticeMico32 Processor Reference Manual 91

WE_I 45
WE_O 43
WISHBONE interconnect 39

coomponent signals 42
introduction to 39
master signals 43
registered feedback mode 40
slave signals 44

WP field 12
WP registers 27, 28, 31
Write Enable Input 45
Write Enable Output 43
writeback pipeline stage 5

X
X field 12
xnor instruction 84
xnori instruction 84
xor instruction 85
xori instruction 85

	LatticeMico32 Processor and Systems
	Programmer’s Model
	Pipeline Architecture
	Data Types
	Register Architecture
	General-Purpose Registers
	Control and Status Registers

	Memory Architecture
	Address Space
	Endianness
	Address Alignment
	Stack Layout
	Caches
	Inline Memories

	Exceptions
	Exception Processing
	Exception Handlers
	Nested Exceptions
	Remapping the Exception Table
	Reset Summary
	Using Breakpoints
	Using Watchpoints

	Debug Architecture
	DC - Debug Control
	DEBA - Debug Exception Base Address
	JTX - JTAG UART Transmit Register
	JRX - JTAG UART Receive Register
	BPn - Breakpoint
	WPn - Watchpoint

	Instruction Set Categories
	Arithmetic
	Logic
	Comparison
	Shift
	Data Transfer
	Program Flow Control

	Configuring the LatticeMico32 Processor
	Configuration Options
	EBR Use

	WISHBONE Interconnect Architecture
	Introduction to WISHBONE Interconnect
	WISHBONE Registered Feedback Mode
	CTI_IO()
	BTE_IO()

	Component Signals
	Master Port and Signal Descriptions
	Slave Port and Signal Descriptions

	Arbitration Schemes
	Shared-Bus Arbitration
	Slave-Side Arbitration

	Instruction Set
	Instruction Formats
	Opcode Look-Up Table
	Pseudo-Instructions
	Instruction Descriptions
	add
	addi
	and
	andhi
	andi
	b
	be
	bg
	bge
	bgeu
	bgu
	bi
	bne
	break
	bret
	call
	calli
	cmpe
	cmpei
	cmpg
	cmpgi
	cmpge
	cmpgei
	cmpgeu
	cmpgeui
	cmpgu
	cmpgui
	cmpne
	cmpnei
	divu
	eret
	lb
	lbu
	lh
	lhu
	lw
	modu
	mul
	muli
	mv
	mvhi
	nor
	nori
	not
	or
	ori
	orhi
	rcsr
	ret
	sb
	scall
	sextb
	sexth
	sh
	sl
	sli
	sr
	sri
	sru
	srui
	sub
	sw
	wcsr
	xnor
	xnori
	xor
	xori

	Index

