[image: ]
[image: ][image: ][image: ][image: ]Released	1. Introduction	CSL-DOC-15-113846 v0.3
[image: ]
[image: ][image: ][image: ]CSL-DOC-15-113846 v0.3	3. Form factor independent tests	Released
[image: ]
[bookmark: _Toc532637491]








FAIR Timing Receiver Node
PMC Form Factor 

Test Plan
	




	Revision:
	0.3

	Status:
	Draft

	Project:
	PMC FTRN

	Document ID:
	CSL-DOC-15-113846

	File:
	FTRN-PMC_Test_Plan.docx

	Owner:
	Rok Tavčar

	Last modification:
	January 11, 2016

	Created:
	January 6, 2016


[bookmark: DocHistory][bookmark: _Toc535405979]
Authors and Reviewers[image: ]
	
	Name
	Affiliation

	Author
	Dušan Slavinec
	Cosylab

	Reviewer
	Rok Tavčar
	Cosylab


Document History	Rev.
	Date
	Person
	Modification
	Status

	0.1
	2015-10-27
	Dušan Slavinec
	Created based on Cosylab test plans and Alexander Hahn's (GSI) commissioning guide
	Draft

	0.2
	2016-01-07
	Rok Tavčar
	Finalize draft, all sections
	Draft

	0.3
	2016-01-11
	Dušan Slavinec, Rok Tavčar
	Finalize draft, all sections
	Draft




ConfidentialityThis document is classified as a confidential document. As such, it or parts thereof must not be made accessible to anyone not listed in the Audience section, neither in electronic nor in any other form.
AudienceThis document is targeted to Cosylab and FAIR employees.
[bookmark: _Toc532637492][bookmark: _Toc535405980]Purpose and ScopeThe system under test is Fair Timing Receiver Node. This document defines the Test Plan for the system under test. The audience of this document is test engineers who will execute the Test Plan and produce the Test Report. 
The purpose of this document is to provide the basis for Factory Acceptance Test (FAT) and Site Acceptance test (SAT).
Tests results per FTRN card item will be recorded in a separate Test Report document. 
[bookmark: ToC]

Table of Contents1. Introduction	5
1.1. Form factor dependent test tools	5
1.2. Form factor independent test tools	6
2. Form factor dependent test plan	7
2.1. JTAG boundary scan HW test	7
2.2. Programming FPGA and FPGA flash	7
2.3. PCI configuration space access	8
2.4. Check Legacy interrupts	10
2.5. Check MSI interrupts	12
2.6. Check CPLD and FPGA connection	14
3. Form factor independent tests	15
3.1. Start Synthesis	15
3.2. Commissioning Preparation	16
3.3. Programming the CPLD	17
3.4. CPLD Hex Switch and Button	18
3.5. Programming the USB Chip	19
3.6. Programming the FPGA using eb-flash	20
3.7. Check White Rabbit Lock	21
3.8. Check if EEPROM is functional	22
3.9. Check LEMOs/LVDS (Clock Generation)	23
3.10. Check Lemos/LVDS (Output => Input Loopback Test)	24
3.11. Check Lemo LEDs/GPIO LEDs/Output Enable	25
3.12. Check PMC/PCI Connection	26
3.13. Check Button and Hex Switch (FPGA and CPLD)	28
3.14. Logic Analyzer Connection	29
3.15. Check Display	30
3.16. Check OneWire Devices	31
3.17. Check PCI(e) interrupts	32
[bookmark: _Ref338042395][bookmark: _Ref338042394][bookmark: _Ref338042393]References
[bookmark: _Toc440295284][bookmark: _Toc337831362]Introduction
This document describes the test procedures for testing FTRN in PMC form factor. The tests are divided in two stages:
1. Form Factor Dependent test
a. JTAG boundary scan-based hardware test, perfomed at HW production company. Report is attached in a separate document.
b. Host bus bridge test and peripheral test using the form factor Dependent Test Software (TSWD) and corresponding FPGA gateware, provided by Cosylab.
2. Form Factor Independent test
This test uses the form factor Independent Test SoftWare (TSWI) and corresponding FPGA gateware, integrated by GSI.

[bookmark: _Toc440295285]Form factor dependent test tools
	Description
	Location
	Version

	Gateware
	https://github.com/GSI-CS-CO/bel_projects/syn/gsi_pmc/control/
	Commit: 
541b7666d600447b19cf4eaef6b2bcb3153e83a0
Branch: pmc_dusan

	Kernel driver
	https://github.com/GSI-CS-CO/bel_projects/ip_cores/pci-core/src/pmc-wb/
	

	Test Software
	https://github.com/GSI-CS-CO/bel_projects/[footnoteRef:1] [1:  relative path from this point to each corresponding tool is written in each test case separately.] 

	



Test platform:
Motherboard: P8Z77-V LE PLUS
Chipset: Intel Z77 Express chipset (supports MSI)
Linux version: SCI linux 6
Kernel version 2.6.32-358.2.1.el6.x86_64

[bookmark: _Toc440295286]Form factor independent test tools
	Description
	Location
	Version

	Gateware
	https://github.com/GSI-CS-CO/bel_projects/syn/gsi_pmc/control/
	Commit: 8b331467ab73455a181c1978fc09c5bc2718deac
Branch: pmc_dusan

	Kernel driver
	https://github.com/GSI-CS-CO/bel_projects/ip_cores/pci-core/src/pmc-wb/
	

	Test Software
	https://github.com/GSI-CS-CO/bel_projects/
	



Test platform:
Motherboard: P8Z77-V LE PLUS
Chipset: Intel Z77 Express chipset (supports MSI)
Linux version: SCI linux 6
Kernel version 2.6.32-358.2.1.el6.x86_64

[bookmark: _Toc440295287]Form factor dependent test plan
This section covers low-level HW testing done via JTAG boundary scan and tests of host bus bridge and any other PMC-specifics. 
Gateware and software, used in host bus bridge tests, does not include the Etherbone/Wishbone layer, but relies on custom GW modules for specific tests. 
[bookmark: _Toc440295288]JTAG boundary scan HW test
Description
JTAG is used for automated hardware testing of signal connections and detect shorts and open circuits. 
The JTAG Tests are described in a separate document.
Test procedure
These tests are done at the HW production company and are performed before any additional tests. 
[bookmark: _Toc440295289]Programming FPGA and FPGA flash
Description
This test checks if FPGA flash can be programmed with Quartus programmer and FPGA loads image from flash after powercycle.
Prerequisites
Git branch : pmc_dusan
commit 541b7666d600447b19cf4eaef6b2bcb3153e83a0
Programmed CPLD
Test procedure
1. Attach the PMC card onto the TEWS PCIe carrier, then insert carrier into the free PCIe slot and turn on PC.
2. Burn .jic file to the FPGA Flash with Quartus programmer
3. Shutdown PC (turn it off) and then back on again
4. Observe front panel IO leds
Expected result:
Quartus programmer should successfully finish burning image into flash.
After turning PC back on all BLUE IO leds should turn off and channel 1 RED led should turn off. 
Channel 2-5 red leds should stay on.
Comments:



[bookmark: _Toc440295290]PCI configuration space access
Description
This test checks if board is recognized by host OS as PCI device on the PCI bus and if PCI configuration space can be read.
Prerequisites
Git branch : pmc_dusan
commit 541b7666d600447b19cf4eaef6b2bcb3153e83a0
Programmed CPLD and FPGA flash.
Test procedure
1. Run lspci command to see if FPGA was loaded from FLASH and was recognized by BIOS and OS:
[user@localhost ~]$ lspci
…
05:00.0 Bridge: CERN/ECP/EDU Device c570 (rev 01)
…

2. Read PCI configuration space of the PMC card:
[user@localhost ~]$ sudo lspci –vvvv –s 05:00
…
05:00.0 Bridge: CERN/ECP/EDU Device c570 (rev 01)
	Subsystem: CERN/ECP/EDU Device beef
	Control: I/O- Mem- BusMaster- SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
	Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-
	Interrupt: pin A routed to IRQ 4
	Region 0: Memory at f7001000 (32-bit, non-prefetchable) [disabled] [size=4K]
	Region 1: Memory at f7000000 (32-bit, non-prefetchable) [disabled] [size=4K]
	Region 2: Memory at f6000000 (32-bit, non-prefetchable) [disabled] [size=16M]
	Capabilities: [50] MSI: Enable- Count=1/1 Maskable- 64bit-
		Address: 00000000  Data: 0000…


3. Read PCI configuration space of the PMC card:
[user@localhost ~]$ sudo lspci -xxxx -s 05:00
05:00.0 Bridge: CERN/ECP/EDU Device c570 (rev 01)
00: dc 10 70 c5 00 00 90 02 01 00 80 06 10 20 00 00
10: 00 10 00 f7 00 00 00 f7 00 00 00 f6 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 dc 10 ef be
30: 00 00 00 00 50 00 00 00 00 00 00 00 04 01 08 1a
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Expected result:
The device “Bridge: CERN/ECP/EDU Device c570 (rev 01)” should be listed and its PCI configuration space can be read.

Comments:



[bookmark: _Toc440295291][bookmark: _Ref444097245]Check Legacy interrupts
Description
This test covers legacy interrupt configuration and triggering.
Prerequisites
Installed pcimem tool
https://github.com/billfarrow/pcimem
Test procedure
1. Insert kernel modules:
[user@localhost ~]$ sudo insmod ./bel_projects/ip_cores/fpga-config-space/pmc-wb/wishbone.ko
[user@localhost ~]$ sudo insmod ./bel_projects/ip_cores/fpga-config-space/pmc-wb/pmc_wb.ko

2. Insert kernel modules and check they were loaded properly:
 [user@localhost ~]$ ls /dev | grep wb
wbm0
wbs0

3. Check that interrupt was assigned by OS:
[user@localhost ~]$ cat /proc/interrupts | grep pmc
17:          0          0          0          0  IR-IO-APIC-fasteoi   pmc_wb

4. Check in the debug messages that IRQ numbers match ( in this case 17):
[user@localhost ~]$ sudo dmesg -c | tail
wishbone: version 795ade8 (2015-10-13 16:46:46 +0200) loaded
pmc_wb 0000:05:00.0: enabling device (0000 -> 0002)
pmc_wb 0000:05:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17
:irq handler: posting MSI : irq count: 1
pmc_wb: irq_handler : parameters irq: 0x11, dev_id: 0x14f26600
pmc_wb: irq_handler : PCI_CONF_IRQ 0x1a080104
pmc_wb: irq_handler : WB_CONF_INT_ACK_REG 0x0
pmc_wb: irq_handler : WB_CONF_ICR_REG 0x1
pmc_wb: irq_handler : WB_CONF_ISR_REG 0x0

Comments: Printout “posting MSI” is from printf in irq handler function and it is same for legacy and MSI interrupts.

5. Enable legacy interrupts in PCI core using pcimem:
[root@localhost user]# /home/user/workspace/pcimem/pcimem/pcimem /sys/devices/pci0000\:00/0000\:00\:1c.5/0000\:04:00.0/0000\:05:00.0/resource1 0x0 w 0xf0000000
/sys/devices/pci0000:00/0000:00:1c.5/0000:04:00.0/0000:05:00.0/resource1 opened.
Target offset is 0x0, page size is 4096
mmap(0, 4096, 0x3, 0x1, 3, 0x0)
PCI Memory mapped to address 0x6532f000.
Value at offset 0x0 (0x7f736532f000): 0x20000000
Written 0xF0000000; readback 0x20000000
Comment: The exact path for the PMC device depends on the PC, OS and slot in which PMC carrier is inserted into. Readback value should be 0x20000000.

6. Press PBF1 button and check that interrupt was triggered:
[root@localhost user]# cat /proc/interrupts | grep pmc
 17:          0          1          0          0  IR-IO-APIC-fasteoi   pmc_wb
[root@localhost user]# dmesg -c
:irq handler: posting MSI : irq count: 2
pmc_wb: irq_handler : parameters irq: 0x11, dev_id: 0x1aff0a00
pmc_wb: irq_handler : PCI_CONF_IRQ 0x1a080104
pmc_wb: irq_handler : WB_CONF_INT_ACK_REG 0x0
pmc_wb: irq_handler : WB_CONF_ICR_REG 0x1
pmc_wb: irq_handler : WB_CONF_ISR_REG 0x1
Comment: “irq count” (in this case 2) should always be incremented value by 1 of the third column in the response of the “cat /proc…” command (in this case 1)

7. Check tha r_irq bit in CONTROL_REGISTER_HIGH is cleared:
pcimem /sys/devices/pci0000\:00/0000\:00\:1c.5/0000\:04:00.0/0000\:05:00.0/resource1 0x0 w 0xf0000000
/sys/devices/pci0000:00/0000:00:1c.5/0000:04:00.0/0000:05:00.0/resource1 opened.
Target offset is 0x0, page size is 4096
mmap(0, 4096, 0x3, 0x1, 3, 0x0)
PCI Memory mapped to address 0x810cc000.
Value at offset 0x0 (0x7f47810cc000): 0x80000000
Written 0xF0000000; readback 0x80000000
Bit 29 of the readback value should be 0.


[bookmark: _Toc440295292]Check MSI interrupts
Description
This test covers MSI interrupt configuration and triggering.
Prerequisites
TEWS PCIe carrier for PMC cards
Test procedure
1. Insert kernel modules:
[user@localhost ~]$ sudo insmod ./bel_projects/ip_cores/fpga-config-space/pmc-wb/wishbone.ko
[user@localhost ~]$ sudo insmod ./bel_projects/ip_cores/fpga-config-space/pmc-wb/pmc_wb_msi.ko

2. Verify that kernel modules were loaded properly:
 [user@localhost ~]$ ls /dev | grep wb
wbm0
wbs0

3. Check that interrupt was assigned by OS:
[user@localhost ~]$ cat /proc/interrupts | grep pmc
43:          0          0          0          0  IR-PCI-MSI-edge      pmc_wb

4. Check in the debug messages that IRQ numbers match ( in this case 43):
[user@localhost ~]$ sudo dmesg -c | tail
pmc_wb 0000:03:00.0: irq 43 for MSI/MSI-X
:irq handler: posting MSI : irq count: 1
pmc_wb: irq_handler : parameters irq: 0x2b, dev_id: 0x1a28c600
pmc_wb: irq_handler : PCI_CONF_IRQ 0x1a08010a
pmc_wb: irq_handler : WB_CONF_INT_ACK_REG 0x0
pmc_wb: irq_handler : WB_CONF_ICR_REG 0x0
pmc_wb: irq_handler : WB_CONF_ISR_REG 0x0
Comments: Printout “posting MSI” is from printf in irq handler function and it is same for legacy and MSI interrupts.

5. Press PBP1 button and check that interrupt was triggered:
[user@localhost ~]$ cat /proc/interrupts | grep pmc
 43:          0          1          0          0  IR-PCI-MSI-edge      pmc_wb [user@localhost ~]$ sudo dmesg -c
:irq handler: posting MSI : irq count: 2
pmc_wb: irq_handler : parameters irq: 0x2b, dev_id: 0x1a28c600
pmc_wb: irq_handler : PCI_CONF_IRQ 0x1a08010a
pmc_wb: irq_handler : WB_CONF_INT_ACK_REG 0x0
pmc_wb: irq_handler : WB_CONF_ICR_REG 0x0
pmc_wb: irq_handler : WB_CONF_ISR_REG 0x0
Comment: “irq count” (in this case 2) should always be incremented value by 1 to the third number in the response of the “cat /proc…” command (in this case 1)



[bookmark: _Toc440295293]Check CPLD and FPGA connection
Description
This test checks that value of the HSP1 HEX switch and PBP1 button are passed to FPGA.
Prerequisites
For this test, specific Gateware version must be used on the FPGA. Follow VHDL build instructions in Section 3.1, but use a different code revision:
Git branch: pmc_dusan
commit 8b331467ab73455a181c1978fc09c5bc2718deac
Test procedure
Hold PBF1 button and change position of the HSP1 hex switch.
Expected result:
When PBF1 button is held down USER LEDs (D8 to D13) should reflect state of the HSP1 HEX switch.
Comments:



[bookmark: _Toc440295294]Form factor independent tests
This test covers form factor independent test cases.
[bookmark: _Ref440295041][bookmark: _Toc440295295]Start Synthesis
Description
Build FPGA Gateware.
Prerequisites
Installed Altera Quartus 
Test procedure
mkdir pmc_gate_ware
cd pmc_gate_ware/
git clone https://github.com/GSI-CS-CO/bel_projects.git
cd bel_projects/
git checkout 8b331467ab73455a181c1978fc09c5bc2718deac
git submodule init
git submodule update
git submodule update --recursive
make pmc

Expected result:
Code should build without errors.

Comments:

[bookmark: _Toc440295296]
Commissioning Preparation
Description
Prepare needed Hardware.
Prerequisites
1. White Rabbit Switch
2. Altera Blaster JTAG cable
3. Xilinx JTAG cable
4. PMC to PCI or PMC to PCIe adapter
5. PC with free PCI or PCIe slot and installed Linux
Test procedure
Attach USB plug
Insert green/purple SFP into baseboard cage and connect to a white rabbit switch
Attach a display (pick one with a brown/yellow background)
Plug in the card into the PMC/PCI slot
Power up PC

Expected result:
PC should boot normally

Comments:



[bookmark: _Toc440295297]Programming the CPLD
Description
Program Xilinx CPLD.
Prerequisites
1. Xilinx JTAG cable
2. Jed file for CPLD
Test procedure
Turn on power
Optional: Set promo5 adapter to SEL1=1, SEL2=4
Open ISE -> /bel_projects/syn/gsi_pmc/cpld/pmc_prog.xise
Process Menu => Implement Top Module
Tools Menu => Impact
Double-click Boundary Scan
Control-I, pmc.jed
Operations Menu => Program
Turn power off and on

Expected result:
CPLD is seen in JTAG chain and can be programmed successfully.

Comments:


[bookmark: _Ref440036666][bookmark: _Toc440295298]CPLD Hex Switch and Button
Description
Check that CPLD is programmed.
Prerequisites
1. Power cycle the board (PC) after CPLD was programmed
Test procedure
Hold the PBP1 button and change position of the HSW1 hex switch.

Expected result: 
When PBP1 is held down, PROG LEDs should show the hex switch position.

Comments:


[bookmark: _Toc440295299]Programming the USB Chip
Description
Program Cypress USB microcontroller.
Prerequisites
1. Installed sdcc (compiler)
2. Installed fxload (Linux loader for Cypres FX USB devices)
Test procedure
Run 'make' in /bel_projects/ip_cores/etherbone-core/hdl/eb_usb_core
Make sure, that no other timing receiver is attached with USB
Erase the USB controller (as root): ./flash-fx2lp.sh -E
Program the USB controller (as root): ./flash-fx2lp.sh
Power cycle the board

Expected result: 
Non programmed microcontroller is seen with “lsusb” as
Cypress Semiconductor Corp. CY7C68013 EZ-USB FX2 USB 2.0 Development Kit
After programming and power cycling the board, “lsusb” should show
OpenMoko, Inc.

Comments:


[bookmark: _Toc440295300]Programming the FPGA using eb-flash
Description
Program FPGA and FPGA flash memory.
Prerequisites
PC with compiled etherbone tools.
Test procedure
Write this bit-stream to the SPI flash: 
/bel_projects/tools/eb-flash dev/ttyUSBx pci_pmc.rpd
Turn power off and on
Expected result:
eb-flash reports all steps successful
Comments:

[bookmark: _GoBack]

[bookmark: _Toc440295301]Check White Rabbit Lock
Description
Checking the ability to lock to other WR node as slave or master.
Prerequisites

Test procedure
Run command /bel_projects/tools/eb-console dev/ttyUSBx
Type in "gui", white rabbit status should be: locked and calibrated
Synchronization status should be:
   + Servo state:               TRACK_PHASE
   + Phase tracking:            ON
You should also see 4 leds at the front panel:
   + red   = traffic/no-link
   + blue  = link
   + green = timing valid
   + white = PPS
Press ESC to quit
Type in "mode master", node should be able to lock the PLL and become a master
Quit console, turn power off and on
Expected result:

Comments:



[bookmark: _Toc440295302]Check if EEPROM is functional
Description
Verify ability to read/write to EEPROM.
Prerequisites

Test procedure
Run /bel_projects/tools/eb-console dev/ttyUSBx
Set MAC address for board #xy: <<mac setp aa:bb:cc:dd:ee:ff>>, Control-C
Turn power off and on
Run eb-console dev/ttyUSBx
Expected result:
 Type in "mac", you should see the previously entered MAC address.
Comments:



[bookmark: _Toc440295303]Check LEMOs/LVDS (Clock Generation)
Description
Verify ability to generate clock on front panel LEMO outputs.
All IOs must be able to generate a 200MHz clock. Therefore, test includes measurement of rise time and fall time of output signal, which must be below 1250 ps.
Prerequisites
Oscilloscope with 50 Ohm termination enabled.
Test procedure
Go to /bel_projects/tools
Make eb-clock
Generate clocks: ./eb-clock -c {Channel/Lemo1.....5} -H {High time in ns} -L {Low time in ns} dev/ttyUSBx
Command example for channel 1, setting 200MHz clock (has 60% duty cycle): 
./eb-clock -c 1 -H 3 -L 2 dev/ttyUSB0
Repeat for every channel (1 to 5).

Expected result:
For channels 1 to 5:
· See generated clock on oscilloscope with period H+L ns and duty cycle of H/L. 
· Rise time and fall time must be below 1250 ps. 
· Blue and red LED of the channel under test are turned on.
Comments:



[bookmark: _Toc440295304]Check Lemos/LVDS (Output => Input Loopback Test)
Description
Propagation delay measurement from one IO to another.
Prerequisites
LEMO to LEMO cable.
Test procedure
Go to /bel_projects/tools
Make io-test
Run command ./io-test dev/ttyUSBx
Connect channel 0 to channel 1 to check if each can act as input or output.
Run command ./io-test dev/ttyUSBx
Repeat for combinations of channels:0-2, 0-3, 0-4.
Expected result:
When io-test finishes, last row of the response should be:
 >>> test successful <<<
Comments:
Use same LEMO to LEMO cable for all IO combinations.


[bookmark: _Toc440295305]Check Lemo LEDs/GPIO LEDs/Output Enable
Description
Check IO direction configurability and generate PPS pulse on IOs.
Prerequisites
Oscilloscope with 50 Ohm termination enabled
LEMO to BNC cable
Test procedure
Go to /bel_projects/tools
Run command ./eca-pps dev/ttyUSBx (this tool will output a PPS on every chancel, according to your OE setup)
You can change the OE setup by eb-write
   + Get the IODIR_HACK slave address by using /bel_projects/ip_cores/etherbone-core/api/tools/eb-ls dev/ttyUSBx
   + Example output: 
27.1           0000000000000651:4d78adfd     800  GSI:IODIR_HACK

   + /bel_projects/ip_cores/etherbone-core/api/tools/eb-write dev/ttyUSBx 0x804/4 0x1f (add 0x4 to the base address to change the lvds OE) (0x1f=every 5 lemos are output)
Expected result:
On IOs set as output RED led is on and BLUE blinks with 1Hz rate and pulse can be observed on scope. On IOs set as input both leds are off and there is no pulse on scope.
Comments:



[bookmark: _Toc440295306]Check PMC/PCI Connection
Description
Test kernel module and PCI core.
Prerequisites

Test procedure
Go to /bel_projects/ip_cores/fpga-config-space/pmc-wb/ 
and insert kernel modules:
sudo insmod wishbone.ko
sudo insmod pmc_wb.ko
Try the following tools (WITH DEV/WBM{n}):
   + /bel_projects/tools/eb-console dev/wbmn
   + /bel_projects/tools/eb-info dev/wbmn
   + /bel_projects/ip_cores/etherbone-core/api/tools/eb-ls dev/wbmn
Write to internal shared ram and read it back:
   + Get the LM32 shared ram address by eb-ls dev/wbmn
   + Example output: 
3.2            0000000000000651:81111444  84000  LM32-RAM-Shared
   + Create a dummy file (which will be written into the ram): 
dd if=/dev/urandom of=foo bs=4k count=1;
   + Write dummy file to the lm32 shared ram: 
/ip_cores/etherbone-core/api/tools/eb-put dev/wbmn 0x84000 foo
   + Get the data from the shared ram: 
/ip_cores/etherbone-core/api/tools/eb-get dev/wbmn 0x84000/4096 bar
   + Compare both files: cmp foo bar
   + Both files should contain the same data
   + Repeat this test in a loop...
Expected result:
Each “eb-“ command should not return error.
Written and read files should match.

Comments:



[bookmark: _Toc440295307]Check Button and Hex Switch (FPGA and CPLD)
Description
Test connection between CPLD and FPGA.
Prerequisites
Programmed CPLD and FPGA.
Test procedure
Go to /ip_cores/etherbone-core/api/tools/
Get address of PMC_CONTROL_UNIT by running ./eb-ls dev/ttyUSB0
Find addresses (offsets) of the button and hex switch in README.md at bel_projects/modules/pmc_ctrl/
Run ./eb-read dev/ttyUSB0 0x< PMC_CONTROL_UNIT+offset>/4
Repeat for all buttons and hex switches (listed in README.md).
Expected result:
Readback value should reflect the state of the corresponding switch and button.
Comments:



[bookmark: _Toc440295308]Logic Analyzer Connection
Description
Check connection between FPGA and logic analyzer connector.
Prerequisites

Test procedure
Go to /ip_cores/etherbone-core/api/tools/
Get address of PMC_CONTROL_UNIT with ./eb-ls dev/ttyUSBx
See README.md at /bel_projects/modules/pmc_ctrl/ for address offset of the logic analayzer port registers.

Expected result:
Similar to test case 3.4.

Comments:



[bookmark: _Toc440295309]Check Display
Description
Test connection to display.
Prerequisites
Get the display tool: svn checkout
https://www-acc.gsi.de/svn/bel/timing/trunk/development/simple-display/
Test procedure
cd simple-display/
make
Write data to the display: ./simple-display dev/ttyUSB0n –s "123456-Test-abcdef" -d 2
Expected result:
Display is recognized by GW and text in command ("123456-Test-abcdef") can be seen on the display.
Comments:



[bookmark: _Toc440295310]Check OneWire Devices
Description
Scan one wire bus for devices.
Prerequisites

Test procedure
Go to: /bel_projects/tools/commissioning/onewire-scanner
make
run application: ./onewire-scanner dev/ttyUSB0
Expected result:
Output should look like this:
Scanning for OneWire controller(s) on dev/ttyUSB0 now...
ID  Wishbone Address    OWID  Serial Code         Type-------------------
00  0x0000000000060600  --    ---                 ---
--  ---                 00    0xXXXXXXXXXXXXXX28  DS18B20 - Digital Thermometer
--  ---                 01    0xXXXXXXXXXXXXXX43  DS28EC20 - 20Kb EEPROM
Found 1 OneWire controller(s) on dev/ttyUSB0.
Found 2 OneWire device(s)/slave(s) on dev/ttyUSB0.

Comments:
Write down serial code of both found devices to test report.


[bookmark: _Toc440295311]Check PCI(e) interrupts
Description
Check that interrupt can be generated and recognized by SW.
Prerequisites
The device must be connected with PCI (dev/wbm) and kernel module must be loaded.
Test procedure
Go to /bel_projects/tools
Run the eca snoop application in first terminal at the tools directory: ./eca-snoop
Use second terminal and go to /bel_projects/ip_cores/wr-cores/modules/wr_eca/
to issue an interrupt: ./eca-ctl (dev/wbm0 or dev/ttyUSB0) send 0xdeadbeef 0 0 +1
Expected result:
You should see an interrupt in your first terminal.
Comments:

[image: ]


[image: ]© 2016 Cosylab	– 14 / 32 –	Confidential
[image: ]© 2016 Cosylab	– 21 / 32 –	Confidential
image1.wmf

image2.emf
 


image3.emf
 


image4.emf
 


image5.emf
 


image6.emf

image7.emf

image8.emf
DRAFT


