wr_hptd_2018_06.tex 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
\documentclass[compress, red]{beamer}
\mode<presentation>

\usepackage{etex}
\setbeamertemplate{navigation symbols}{}
%\usepackage{pgfpages}
%\usepackage{listings}

\usetheme{Warsaw}

% define your own colors:
\definecolor{Red}{rgb}{1,0,0}
\definecolor{Blue}{rgb}{0,0,1}
\definecolor{Green}{rgb}{0,1,0}
\definecolor{magenta}{rgb}{1,0,.6}
\definecolor{lightblue}{rgb}{0,.5,1}
\definecolor{lightpurple}{rgb}{.6,.4,1}
\definecolor{gold}{rgb}{.6,.5,0}
\definecolor{orange}{rgb}{1,0.4,0}
\definecolor{hotpink}{rgb}{1,0,0.5}
\definecolor{newcolor2}{rgb}{.5,.3,.5}
\definecolor{newcolor}{rgb}{0,.3,1}
\definecolor{newcolor3}{rgb}{1,0,.35}
\definecolor{darkgreen1}{rgb}{0, .35, 0}
\definecolor{darkgreen}{rgb}{0, .6, 0}
\definecolor{darkred}{rgb}{.75,0,0}

\xdefinecolor{olive}{cmyk}{0.64,0,0.95,0.4}
\xdefinecolor{purpleish}{cmyk}{0.75,0.75,0,0}

\useoutertheme[subsection=false]{smoothbars}

% include packages
\usepackage{subfigure}
\usepackage{multicol}
\usepackage{amsmath}
\usepackage{epsfig}
\usepackage{graphicx}
\usepackage[all]{xy}
%\xyoption{arc}
\usepackage{url}
\usepackage{multimedia}
\usepackage{hyperref}
\usepackage{helvet}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{changepage}
\usepackage{textcomp}
     
\newcommand{\backupbegin}{
   \newcounter{framenumberappendix}
   \setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
   \addtocounter{framenumberappendix}{-\value{framenumber}}
   \addtocounter{framenumber}{\value{framenumberappendix}} 
}

\graphicspath{ {../../figures/} }

\usepackage[font=small,skip=0pt]{caption}
\captionsetup{labelformat=empty,labelsep=none}
%\setlength{\abovecaptionskip}{5pt plus 3pt minus 2pt}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Title Page Info %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69
\title[White Rabbit\hspace{5em}\insertframenumber]{White Rabbit}
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
\author{Javier Serrano}
\institute{CERN BE-CO\\Hardware and Timing section}
\date[26 June 2018]{High-Precision Timing Distribution meeting\\Geneva, 26 June 2018}

\AtBeginSection[]
{
  \begin{frame}<beamer>{Outline}
    \tableofcontents[currentsection]
  \end{frame}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Begin Your Document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}
%\setbeamertemplate{caption}{\raggedright\insertcaption\par}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\frame{\titlepage}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}<beamer>{Outline}
  \tableofcontents
\end{frame}

\section{Introduction}
\subsection{}
%=======================


\begin{frame}{White Rabbit: an \emph{extension} of Ethernet}
\begin{columns}[c]
  \column{.5\textwidth}
 
  \begin{itemize}
      \item Standard Ethernet network
      \item Ethernet features (VLAN) \& protocols (SNMP)
    \end{itemize}
    \begin{itemize}
      \item \color{Blue}{Sub-ns synchronisation}
      \item \color{Red}{Guaranteed (by design) upper bound in frame latency}
  \end{itemize}

  \column{.6\textwidth}
    \begin{center}
    \includegraphics[height=1.05\textwidth]{network/wr_network-enhanced_pro.pdf}
    \end{center}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}{White Rabbit application examples}

  \begin{columns}[c]
    \column{0.7\textwidth}
  \begin{itemize}
      \item<1-> \color<2->{black!50}{CERN and GSI}
      \item<2-> \color<3->{black!50}{HiSCORE: Gamma\&Cosmic-Ray experiment}
      \item<3-> \color<4->{black!50}{The Large High Altitude Air Shower Observatory}
      \item<4-> \color<5->{black!50}{MIKES: Centre for metrology and accreditation}
      \item<5-> {KM3NET: European deep-sea neutrino telescope}
    \end{itemize}

    \column{0.45\textwidth}    
    \begin{center}
      \includegraphics<1>[width=0.80\textwidth]{applications/gsiANDcern.pdf}
      \pause
      \includegraphics<2>[width=1\textwidth]{applications/tunka.pdf}
      \pause
      \includegraphics<3>[width=1\textwidth]{applications/lhaaso.pdf}
      \pause
      \includegraphics<4>[width=.7\textwidth]{applications/mikes.pdf}
      \pause
      \includegraphics<5->[width=1\textwidth]{applications/KM3NeT.pdf}
    \end{center}

  \end{columns}
  \pause
    {\small More WR collaborators: \url{http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers}}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Technology}
\subsection{}

\begin{frame}{White Rabbit technology}
  \begin{block}{Based on}
    \begin{itemize}
      \item Gigabit Ethernet over fibre
      \item IEEE-1588 protocol
    \end{itemize}
  \end{block}
  \pause
  \begin{block}{Enhanced with}
    \begin{itemize}
      \item Layer 1 syntonisation
      \item Digital Dual Mixer Time Difference (DDMTD)
      \item Link delay model
    \end{itemize}
  \end{block}
\end{frame}

\begin{frame}{Precision Time Protocol (IEEE 1588)}
\begin{columns}[c]
  \column{.4\textwidth}
    \begin{center}
      \includegraphics[height=5cm]{protocol/ptp_exchange.pdf}
    \end{center}
  \column{.75\textwidth}
    \begin{itemize}
	  \item Frame-based synchronisation protocol.
    \item Simple calculations:
    \begin{itemize}
      \item link $delay_{ms}$ $\delta_{ms} = \frac{(t_{4}-t_{1}) - (t_{3}-t_{2})}{2}$
      \item clock $offset_{ms} = t_{2} - (t_{1} + \delta_{ms})$
    \end{itemize}
    \item<2> Disadvantages
    \begin{itemize}
      \item assumes symmetry of medium
      \item all nodes have free-running oscillators
      \item frequency drift compensation vs. message exchange traffic
    \end{itemize}
  \end{itemize}
\end{columns}
\end{frame}

\begin{frame}{Layer 1 Syntonisation}
 %\begin{block}{Common clock for the entire network}
  \begin{itemize}
    \item All network devices use the same physical layer clock.
    \item Clock is encoded in the Ethernet carrier and recovered by the receiver chip.
    \item Phase detection allows sub-ns delay measurement.
  \end{itemize}
%\end{block}
\vspace{-0.2cm}
  \begin{center}
  \includegraphics[height=4.5cm]{misc/synce_v3.pdf}
  \end{center}
\end{frame}

\begin{frame}{Digital Dual Mixer Time Difference}{DDMTD}

  \begin{itemize}
    \item Used for precise phase measurements
    \item Implemented in FPGA and SoftPLL
    \item 62.5MHz WR clock and N=14 results in 3.814kHz output signals
  \end{itemize}
  \vspace{-0.2cm}
  \begin{center}
  \includegraphics[width=\textwidth]{misc/dmtd_2N.pdf}
  \end{center}

\end{frame}

\begin{frame}{Link delay model}
  \begin{center}
    \includegraphics[width=0.9\textwidth]{calibration/link-model.pdf}
  \end{center}
  \begin{itemize}
    \item static hardware delays: $\Delta_{TXM}$, $\Delta_{RXM}$, $\Delta_{TXS}$, $\Delta_{RXS}$
    \item semi-static hardware delays: $\epsilon_M$, $\epsilon_S$
    \item fibre asymmetry coefficient: $\alpha = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}}$
  \end{itemize}
  \pause
  \begin{block}{}
    Calibration procedure to find $\Delta_{TXM}$, $\Delta_{RXM}$,
    $\Delta_{TXS}$, $\Delta_{RXS}$ and $\alpha$.
  \end{block}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Equipment}
\subsection{}

\begin{frame}{Typical WR network}
  \begin{center}
		\includegraphics[width=.5\textwidth]{network/wr_network-enhanced_pro.pdf}
  \end{center}
\end{frame}

\begin{frame}[t,fragile]{White Rabbit Switch}
	\begin{center}
		\includegraphics[width=\textwidth]{switch/wrSwitch_v3_3.jpg}
		\begin{itemize}
			\item Central element of WR network
			\item 18 port gigabit Ethernet switch with WR features
			\item Optical transceivers: up to 10km, single-mode fiber
      \item Fully open design, commercially available
		\end{itemize}
	\end{center}
\end{frame}

\begin{frame}{Simplified block diagram of the hardware}
	\vspace{-0.3cm}
  \begin{center}
    \includegraphics[width=.85\textwidth]{switch/switch3_4_simple_diagram_h.pdf}
  \end{center} 
\end{frame}

\begin{frame}{Simplified block diagram of the gateware}
  \begin{center}
    \begin{adjustwidth}{-1.5em}{-1.5em}
      \includegraphics[width=1.1\textwidth]{switch/switch_hdl_simple.pdf}
    \end{adjustwidth}
  \end{center}
\end{frame}


\begin{frame}{WR Node: SPEC board}
    \begin{center}
    \includegraphics[width=7cm]{node/spec.jpg}
    \end{center}

  \begin{columns}[c]
    \column{.01\textwidth}
    \column{.98\textwidth}

	\begin{block}{FMC-based Hardware Kit}
	  \begin{itemize}
%	  \item Carrier boards in PCI-Express, VME, PXIe
	  \item All carrier cards are equipped with a White Rabbit port.
	  \item Mezzanines can use the accurate clock signal and ``TAI''
		\\ (synchronous sampling clock, trigger time tag, ...).
	  \end{itemize}
	\end{block}

    \column{.01\textwidth}
  \end{columns}
\end{frame}

\begin{frame}{White Rabbit PTP Core}
 \begin{center}
   \includegraphics[width=\textwidth]{node/wrpc_inside-v3-0.pdf}
   \end{center}
\end{frame}


\section{Performance}
\subsection{}
\begin{frame}{WR time transfer performance: basic test setup}

    \begin{center}
    \includegraphics[height=7.0cm]{measurements/meas_setup.pdf}
    \end{center}

\end{frame}

\begin{frame}{WR time transfer performance: test results}

    \begin{center}
    \includegraphics[height=6.0cm]{measurements/meas_results2.pdf}
    \end{center}

\end{frame}


\section{Current developments}
\subsection{}

\begin{frame}{Current developments}
  \begin{block}{Switches and nodes are commercially available}
  Work now revolves around better diagnostics and remote management of WR
  networks as well as improving the phase noise and performing extensive network stress tests.
  \end{block}
  \pause
  \begin{block}{Standardisation}
    IEEE 1588 revision process is ongoing and contains a sub-committee (High
    Accuracy) dedicated to White Rabbit. Revised standard expected in 2019.
  \end{block}
  \pause
  \begin{block}{Robustness}
  Based on redundant information and fast switch-over between
  redundant fibres and switches. 
  \end{block}
\end{frame}

\begin{frame}{Ethernet Clock distribution a.k.a. Distributed DDS}
  \begin{center}
    \includegraphics[width=\columnwidth]{applications/remote_dds.pdf}
  \end{center}
  \begin{block}{Distributed Direct Digital Synthesis}
    \begin{itemize}
    \item Replaces dozens of cables with a single fiber.
    \item Works over big distances without degrading signal quality.
    \item Can provide various clocks (RF of many rings and linacs)
      with a single, standard link.
    \end{itemize}
  \end{block}
\end{frame}

\begin{frame}{Distributed oscilloscope}
 \begin{center}
   \includegraphics[width=0.9\textwidth]{applications/distr_oscill.pdf}
   \end{center}
   \begin{block}{}
     \begin{itemize}
     \item Common clock in entire network: no skew between ADCs.
     \item Ability to sample with different clocks via Distributed DDS.
     \item External triggers can be time tagged with a TDC and used to reconstruct the original time base in the operator's 
PC.
     \end{itemize}
   \end{block}
\end{frame}

\section{Conclusions}
\subsection{}

\begin{frame}{Summary}
  \begin{itemize}
	  \item Scientific, open (H/W \& S/W), with commercial support
    \pause
	  \item More applications than ever expected
    \pause
	  \item A versatile solution for general control and data acquisition
    \pause
	  \item Standard-compatible and standard-extending
    \pause
	  \item Active participation in IEEE1588 revision process
 \end{itemize}
% \pause
%For more information see http://www.ohwr.org/projects/white-rabbit/wiki
\end{frame}

\begin{frame}{Need more information?}
  \begin{center}
    \includegraphics[height=4.0cm]{misc/white_rabbit_end.png}
  \end{center}
  
  \begin{center}
    http://www.ohwr.org/projects/white-rabbit/wiki
  \end{center}  
\end{frame}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
\appendix

\section*{Reserve Slides}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{What is White Rabbit?}

\begin{columns}[c]
	\column{0.8\textwidth}
	  \begin{itemize}
		\item Renovation of accelerator's control and timing
		\item Based on well-known technologies
		\item Open Hardware and Open Software with commercial support
		\item International collaboration
    \item Many users: CERN, GSI, KM3NET, cosmic ray detectors, metrology labs...
	  \end{itemize}
	\column{0.3\textwidth}
		\begin{center}
		\includegraphics[width=1.0\textwidth]{logo/WRlogo.pdf}
		\end{center}
	\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}{Why we use Open Hardware ?}
  \begin{center}
    \includegraphics[width=.7\textwidth]{ohwr/commercial_and_open.pdf}
  \end{center}
  \begin{itemize}
    \item Get a design just the way we want it
    \item Peer review and design re-use
    \item Healthier relationship with companies
  \end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\frame{\frametitle{An aside: PLL block diagram}
\includegraphics[width=\textwidth]{misc/pll_model.pdf}
}

\frame{\frametitle{An aside: PLL transfer functions}
\begin{block}{Total output phase spectrum}
$ \Phi_o(s) = H(s) \cdot \Phi_i(s) + E(s) \cdot \Phi_n(s) $
\end{block}

\begin{block}{System transfer function (low pass)}
$ H(s) = \frac{K_{VCO} K_d F(s)}{s + K_{VCO} K_d F(s)} $
\end{block}

\begin{block}{Error transfer function (high pass)}
$ E(s) = 1 - H(s) = \frac{s}{s + K_{VCO} K_d F(s)} $
\end{block}
}

\frame{\frametitle{An aside: jitter optimisation}
\includegraphics[height=0.7\textwidth]{misc/pll_psd.pdf}
}


\begin{frame}{Test setup for 10MHz switch output}
  \begin{center}
    \includegraphics[width=\textwidth]{measurements/WRSlowJitter/rsz_experimental_setup.png}
  \end{center}
\end{frame}

\begin{frame}{WR switch clocking scheme}{Thanks to Mattia Rizzi for the work and
  the figures in this section}
  \begin{center}
    \includegraphics[width=.85\textwidth]{switch/wrs_v3_3_clocking.png}
  \end{center}
\end{frame}

\begin{frame}{MMCM noise}
  \begin{center}
    \includegraphics[height=.7\textheight]{switch/mmcm_noise.png}
  \end{center}
\end{frame}

\begin{frame}{WR Switch: low jitter daughterboard}
  \begin{columns}
    \column{.35\textwidth}
    \includegraphics[width=.8\textheight, angle=90]{measurements/WRSlowJitter/rsz_3d_image__1_.jpg}
    \column{.65\textwidth}
    \begin{itemize}
      \item Current release of WRS in GM mode has sub-optimal performance on both jitter (9ps RMS 1Hz-100kHz) and ADEV (1.4E-11 $\tau$=1s ENBW 50Hz)
      \item A daughterboard was designed, produced and tested to improve the performance
      \item Modified WRS improves performance on both jitter ($<$2ps RMS 10Hz-100kHz) and ADEV ($<$5E-13 $\tau$=1s ENBW 50Hz) in GM mode
    \end{itemize}
  \end{columns}
\end{frame}

\begin{frame}{Test Results in GM mode: PM noise}
  \begin{center}
    \includegraphics[height=.85\textheight]{measurements/WRSlowJitter/pn.png}
  \end{center}
\end{frame}

\begin{frame}{Test Results in GM mode: Modified ADEV}
  \begin{center}
    \includegraphics[height=.85\textheight]{measurements/WRSlowJitter/mdev.png}
  \end{center}
\end{frame}

511
\end{document}