Commit 51e9d4fe authored by Maciej Lipinski's avatar Maciej Lipinski

Eriks feedback

parent 45f6b337
...@@ -51,15 +51,15 @@ ...@@ -51,15 +51,15 @@
%\boldmath %\boldmath
This article provides a non-exhaustive overview of applications and This article provides a non-exhaustive overview of applications and
enhancements to the White Rabbit (WR) extension of the Precision Time Protocol (PTP). enhancements to the White Rabbit (WR) extension of the IEEE1588 Precision Time Protocol (PTP).
Initially developed to serve accelerators at the European Organization for Initially developed to serve accelerators at the European Organization for
Nuclear Research (CERN), WR has become widely-used synchronization solution Nuclear Research (CERN), WR has become a widely-used synchronization solution
in scientific installations. This article classifies WR applications in scientific installations. This article classifies WR applications
into five types, briefly explains each and describes its example into five types, briefly explains each and describes its example
installations. The article then summarizes WR enhancements that have been triggered by installations. The article then summarizes WR enhancements that have been triggered by
different applications and outlines WR's integration into the PTP standard. different applications and outlines WR's integration into the PTP standard.
Based on the presented variety of WR applications and enhancements, it concludes Based on the presented variety of WR applications and enhancements, it concludes
that WR will continue to proliferate in scientific applications and should soon find its way into the industry. that WR will continue to proliferate in scientific applications and should soon find its way into industry.
\end{abstract} \end{abstract}
...@@ -139,64 +139,64 @@ IEEE1588 standard and we conclude in Section~\ref{sec:conclusions}. ...@@ -139,64 +139,64 @@ IEEE1588 standard and we conclude in Section~\ref{sec:conclusions}.
\centering \centering
\scriptsize \scriptsize
\begin{tabular} \begin{tabular}
{| p{0.9cm} | p{1cm} | p{0.6cm} | c | p{0.9cm} | p{0.99cm} | p{1.1cm} |} \hline {| p{0.9cm} | p{1cm} | p{0.6cm} | p{0.7cm} | p{0.7cm} | p{0.99cm} | p{1.1cm} |} \hline
& & & \textbf{Link} & \multicolumn{2}{c |}{\textbf{ Network Size}} & \\ & & & & \multicolumn{2}{c |}{\textbf{ Network Size}} & \\
\textbf{Facility}&\textbf{Location}&\textbf{Type}&\textbf{len.} & \textbf{in 2018}& \textbf{$>$2020} &\textbf{Reference} \\ \textbf{Facility}&\textbf{Location}&\textbf{Type}&\textbf{Link} & \textbf{in 2018}& \textbf{$>$2020} &\textbf{Reference} \\
& & & [km] & N / S / L & N / S / L & \\ \hline & & &\textbf{len.} & N / S / L & N / S / L & \\ \hline
% & & & (max) & & & \\ \hline % & & & (max) & & & \\ \hline
\multicolumn{7}{|c|}{\textbf{Accelerators, synchrotrons and spallation sources}} \\ \hline \multicolumn{7}{|c|}{\textbf{Accelerators, synchrotrons and spallation sources}} \\ \hline
CERN & Switz. & TF & 10 & 0/2/1 & 0/2/1 & \\ \hline CERN & Switz. & TF & 10~km & 0/2/1 & 0/2/1 & \\ \hline
CERN & Switz. & FL & 1 & 6/2/1 & 20/8/1 & \cite{biblio:wr-streamers}\cite{biblio:WR-Btrain}\cite{biblio:WR-Btrain-MM} \cite{biblio:WR-BTrain-RF}\cite{biblio:WR-Btrain-status}\\ \hline CERN & Switz. & FL & 1~km & 6/2/1 & 20/8/1 & \cite{biblio:wr-streamers}\cite{biblio:WR-Btrain}\cite{biblio:WR-Btrain-MM} \cite{biblio:WR-BTrain-RF}\cite{biblio:WR-Btrain-status}\\ \hline
CERN & Switz. & TD & 10 & 8/2/1 & 65/31/2 & \cite{biblio:WR-LIST}\cite{biblio:WR-LIST-2}\cite{biblio:WRXI} \\ \hline CERN & Switz. & TD & 10~km & 8/2/1 & 65/31/2 & \cite{biblio:WR-LIST}\cite{biblio:WR-LIST-2}\cite{biblio:WRXI} \\ \hline
CERN & Switz. & RF & 10 & -/-/- & 13/1/1 & \cite{biblio:WR-LIST} \\ \hline CERN & Switz. & RF & 10~km & -/-/- & 13/1/1 & \cite{biblio:WR-LIST} \\ \hline
CERN & Switz. & TC & 10 & -/-/ & 500/40/4 & \\ \hline CERN & Switz. & TC & 10~km & -/-/ & 500/40/4 & \\ \hline
GSI & Germany & TC & 1 & 35/4/4 & 2000/300/4& \cite{biblio:WR-GSI}\cite{biblio:FAIRtimingSystem} \\ \hline GSI & Germany & TC & 1~km & 35/4/4 & 2000/300/4& \cite{biblio:WR-GSI}\cite{biblio:FAIRtimingSystem} \\ \hline
JINR & Russia & TS,TD & 1 & 50/15/3 & 250/30/3 & \cite{biblio:JINR-WR} \\ \hline JINR & Russia & TS,TD & 1~km & 50/15/3 & 250/30/3 & \cite{biblio:JINR-WR} \\ \hline
ESRF & France & RF,TS & 1 & 7/1/1 & 40/5/2 & \cite{biblio:ESRF-WR} \\\hline ESRF & France & RF,TS & 1~km & 7/1/1 & 40/5/2 & \cite{biblio:ESRF-WR} \\\hline
CSNS & Chine & TF,TS, TD & 1 & 50/4/2 & 50/4/2 &\cite{biblio:CSNS-WR} \\ \hline CSNS & Chine & TF,TS, TD & 1~km & 50/4/2 & 50/4/2 &\cite{biblio:CSNS-WR} \\ \hline
\multicolumn{7}{|c|}{\textbf{Neutrino Detectors}} \\ \hline \multicolumn{7}{|c|}{\textbf{Neutrino Detectors}} \\ \hline
CERN & Switz. & TS & 10 & 10/4/2 & & \cite{biblio:wr-cngs} \\ \hline CERN & Switz. & TS & 10~km & 10/4/2 & & \cite{biblio:wr-cngs} \\ \hline
KM3Net & France & TF,TS & 40 & 18/1/1 & 4140/270/3 & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline KM3Net & France & TF,TS & 40~km & 18/1/1 & 4140/270/3 & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline
KM3Net & Spain & TF,TS & 100 & 18/1/1 & 2070/130/2 & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline KM3Net & Spain & TF,TS & 100~km & 18/1/1 & 2070/130/2 & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline
% CHIPS & USA & & 1km & & 200/16/? & \\ \hline % CHIPS & USA & & 1km & & 200/16/? & \\ \hline
DUNE & Switz/USA & TS,TD & 1 & 14/5/2 & 36/5/2 & \\ \hline DUNE & Switz/USA & TS,TD & 1~km & 14/5/2 & 36/5/2 & \\ \hline
SBN & USA & TS,TD & 1 & 6/1/1 & 6/1/1 & \\ \hline SBN & USA & TS,TD & 1~km & 6/1/1 & 6/1/1 & \\ \hline
GVD & Russia & TS,TD & 1 & 3/1/1 & 3/1/1 & \cite{biblio:GVD} \\ \hline GVD & Russia & TS,TD & 1~km & 3/1/1 & 3/1/1 & \cite{biblio:GVD} \\ \hline
\multicolumn{7}{|c|}{\textbf{Cosmic Ray Detectors}} \\ \hline \multicolumn{7}{|c|}{\textbf{Cosmic Ray Detectors}} \\ \hline
LHAASO & China & TF,TS & 1 & 40/4/4 & 6734/564/4 & \cite{biblio:LHAASO}\cite{biblio:LHAASO-WR-temp}\cite{biblio:LHAASO-WR-calibrator} \cite{biblio:LHAASO-WR-prototype}\\ \hline LHAASO & China & TF,TS & 1~km & 40/4/4 & 6734/564/4 & \cite{biblio:LHAASO}\cite{biblio:LHAASO-WR-temp}\cite{biblio:LHAASO-WR-calibrator} \cite{biblio:LHAASO-WR-prototype}\\ \hline
% HiSCORE & Russia & TS,TD & & & & \\ \hline % HiSCORE & Russia & TS,TD & & & & \\ \hline
TAIGA & Russia & TS,TD & 1 & 20/4/2 & 1100/90/3 & \cite{biblio:TAIGA-WR-1}\cite{biblio:TAIGA-WR-2}\cite{biblio:TAIGA-WR-harsh-env} \\ \hline TAIGA & Russia & TS,TD & 1~km & 20/4/2 & 1100/90/3 & \cite{biblio:TAIGA-WR-1}\cite{biblio:TAIGA-WR-2}\cite{biblio:TAIGA-WR-harsh-env} \\ \hline
CTA & Spain/Chile & TF,TS & 10 & 32/3/2 & 220/10/2 & \cite{biblio:CTA-WR-timestamps}\\ \hline CTA & Spain/Chile & TF,TS & 10~km & 32/3/2 & 220/10/2 & \cite{biblio:CTA-WR-timestamps}\\ \hline
HAWC & Maxico & TS,TD & 1 & & & \cite{biblio:GVD} \\ \hline HAWC & Maxico & TS,TD & 1~km & & & \cite{biblio:GVD} \\ \hline
\multicolumn{7}{|c|}{\textbf{National Time Laboratories}} \\ \hline \multicolumn{7}{|c|}{\textbf{National Time Laboratories}} \\ \hline
MIKES & Finland & TF & 950 & 10/few/2 & 10/few/2 & \cite{biblio:MIKES-50km}\cite{biblio:MIKES+VSL} \\ \hline MIKES & Finland & TF & 950~km & 10/few/2 & 10/few/2 & \cite{biblio:MIKES-50km}\cite{biblio:MIKES+VSL} \\ \hline
LNE-SYRTE & France & TF & 125 & 4/2/4 & 4/2/4 & \cite{biblio:SYRTE-LNE-25km}\cite{biblio:SYRTE-LNE-500km} \\ \hline LNE-SYRTE & France & TF & 125~km & 4/2/4 & 4/2/4 & \cite{biblio:SYRTE-LNE-25km}\cite{biblio:SYRTE-LNE-500km} \\ \hline
VLS & Nederland & TF & 137 & 4/2/1 & 4/2/1 & \cite{biblio:MIKES+VSL} \\ \hline VLS & Nederland & TF & 137~km & 4/2/1 & 4/2/1 & \cite{biblio:MIKES+VSL} \\ \hline
NIST & USA & TF & 10 & 2/-/1 & expanding & \cite{biblio:WR-NIST} \\ \hline NIST & USA & TF & 10~km & 2/-/1 & expanding & \cite{biblio:WR-NIST} \\ \hline
NLP & UK & TF & & & & \\ \hline NLP & UK & TF & & & & \\ \hline
INRIM & Italy & TF,TS & 400 & 8/1/1 & expanding & \cite{biblio:WR-INRIM}\cite{biblio:WR-INRIM-400km} \\ \hline INRIM & Italy & TF,TS & 400~km & 8/1/1 & expanding & \cite{biblio:WR-INRIM}\cite{biblio:WR-INRIM-400km} \\ \hline
\multicolumn{7}{|c|}{\textbf{Other Applications}} \\ \hline \multicolumn{7}{|c|}{\textbf{Other Applications}} \\ \hline
SKA & Australia/ Africa& TF & 80 & 2/1/1 & 233/15/3 & \cite{biblio:SKA-80km} \\ \hline SKA & Australia/ Africa& TF & 80~km & 2/1/1 & 233/15/3 & \cite{biblio:SKA-80km} \\ \hline
DLR & Germany & TD & 1 & 1/1/1 & 1/1/1 & \cite{biblio:ELI-BEAMS-WR} \\ \hline DLR & Germany & TD & 1~km & 1/1/1 & 1/1/1 & \cite{biblio:ELI-BEAMS-WR} \\ \hline
ELI-ALPS & Hungry & TS & 1 & & & \cite{biblio:ELI-ALP-WR} \\ \hline ELI-ALPS & Hungry & TS & 1~km & & & \cite{biblio:ELI-ALP-WR} \\ \hline
ELI-BEAMS & Czech & TF,TS, TD,TC& 1 & 70/16/2 & 70/16/2 & \cite{biblio:ELI-BEAMS-WR} \\ \hline ELI-BEAMS & Czech & TF,TS, TD,TC& 1~km & 70/16/2 & 70/16/2 & \cite{biblio:ELI-BEAMS-WR} \\ \hline
EPFL & Switzerland & TS & 1 & 2/1/1 & 2/1/1 & \cite{biblio:EPFL-WR-PMU} \\ \hline EPFL & Switzerland & TS & 1~km & 2/1/1 & 2/1/1 & \cite{biblio:EPFL-WR-PMU} \\ \hline
\multicolumn{4}{|r|}{\textbf{Total number of WR nodes: }} & \textbf{456} & \textbf{17571} & \\ \multicolumn{4}{|r|}{\textbf{Total number of WR nodes: }} & \textbf{456} & \textbf{17571} & \\
...@@ -1259,19 +1259,24 @@ is described in \cite{biblio:WRin1588}. ...@@ -1259,19 +1259,24 @@ is described in \cite{biblio:WRin1588}.
\section{Conclusions} \section{Conclusions}
\label{sec:conclusions} \label{sec:conclusions}
WR is an innovative solution to provide sub-ns accuracy and picoseconds
precision of synchronization over large distances.
The number of WR applications and their specifications have exceeded the original The number of WR applications and their specifications have exceeded the original
assumptions of the project. expectations of the project.
This proliferation can be attributed to the fact that WR is based This proliferation can be attributed to the fact that WR is standard, open and
on standards and it is openly as well as commercially available while meeting commercially available. The open nature of WR allows its users to contribute to the
very stringent synchronization requirements. The open nature of WR allows its users to contribute to the
project with their project with their
specific expertise and new developments, opening WR to more applications. specific expertise and new developments.
WR has become a \textit{de facto} for synchronization in scientific installations % , making it find its way in more applications.
and it is now becoming an industry standard within the IEEE1588. WR has become a \textit{de facto} standard for synchronization in scientific installations
With its wide adaptation in science, commercial support, up-coming and it is now becoming an industry standard within IEEE1588.
standardization and EU-funded project to catalyze applications in the With its wide adaptation in science, commercial support, upcoming
industry, WR applications will continue to proliferate in standardization and EU-funded projects to catalyze applications in
science and should soon find its way into industry. industry, WR will
continue to proliferate in scientific applications and should soon find its way into industry.
%
% continue to proliferate in
% science and should soon find its way into industry.
% \\ % \\
% \\ % \\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment