Commit f4ae7543 authored by Maciej Lipinski's avatar Maciej Lipinski

[WIP] Included feedback from rehearsal, almost final

parent caf2a3f1
figures/misc/WR-zoo.jpg

209 KB | W: | H:

figures/misc/WR-zoo.jpg

211 KB | W: | H:

figures/misc/WR-zoo.jpg
figures/misc/WR-zoo.jpg
figures/misc/WR-zoo.jpg
figures/misc/WR-zoo.jpg
  • 2-up
  • Swipe
  • Onion skin
......@@ -109,14 +109,14 @@
\item<1-> Initiated to renovate accelerator's ctrl \& timing
\item<2-> Based on well-established standards
\begin{itemize}\footnotesize
\item <3->Bridged Local Area Network \textcolor{gray}{(IEEE 802.1Q)}
\item <3->Ethernet \textcolor{gray}{(IEEE 802.3)}
\item <3->Bridged Local Area Network \textcolor{gray}{(IEEE 802.1Q)}
\item <4->Precision Time Protocol \textcolor{gray}{(IEEE 1588)}
\end{itemize}
\item<6->Extends standards to meet CERN requirements and provides
\begin{enumerate}
\item \color{blue!90}{\textbf{Sub-ns synchronization}}
\item \color{red}{{\textbf{Deterministic data transfer}}}
\item \color{red}{{\textbf{Deterministic data transfer}} [2]}
\end{enumerate}
\item<7-> Initial specs: links up to 10km, $\approx$2000 nodes
\item<8-> Open Source with commercial support
......@@ -144,7 +144,7 @@
\includegraphics[width=1.0\textwidth]{misc/WR-zoo.jpg}\vspace{-1cm}
\begin{center}
\small
\textbf{Companies selling White Rabbit [2]:} \url{www.ohwr.org/projects/white-rabbit/wiki/wrcompanies}
\textbf{Companies selling White Rabbit [3]:} \url{www.ohwr.org/projects/white-rabbit/wiki/wrcompanies}
\end{center}
\end{frame}
......@@ -198,8 +198,8 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\end{columns}
\pause\pause\pause\pause\pause
{\scriptsize See user page [3]: \url{http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers}}
{\scriptsize See also article [4] and newsletter [5]}
{\scriptsize See user page [4]: \url{http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers}}
{\scriptsize See also article [5] and newsletter [6]}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
......@@ -301,15 +301,15 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{itemize}
\item <1->Previous tricks allow high precision of round trip (RTT) measurement
\item <2->Accuracy requires mitigation of asymmetries
\item <3->Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion [6,7]
\item <3->Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion [7,8]
\item <4->Link delay model:
\begin{itemize}\scriptsize
\item \textbf{Fixed delays:} assumed constant, calibrated/measured
\item \textbf{Variable delays:} online evaluation with fiber asymmetry coefficient: $\alpha = \frac{\nu_g(\lambda_S)}{\nu_g(\lambda_M)} -1 = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}}$
\item \textbf{Variable delays:} online evaluation with fiber asymmetry coefficient:\vspace{0.1cm} $\alpha = \frac{\nu_g(\lambda_S)}{\nu_g(\lambda_M)} -1 = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}}$
\end{itemize}
\item <5-> Accurate offset from master (OFM):\scriptsize \\
\item <5-> Accurate offset from master (OFM):\scriptsize \\\vspace{0.2cm}
% $RTT=(t_{4}-t_{1}) - (t_{3}-t_{2})$\\
$\delta_{ms}~ = \frac{1 + \alpha}{2 + \alpha} \, (RTT - \Delta - \epsilon)$
$\delta_{ms}~ = \frac{1 + \alpha}{2 + \alpha} \, (RTT - \sum \Delta - \sum \epsilon)$\vspace{0.2cm}
$OFM = t_{2} - (t_{1} + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S)$
\end{itemize}
\column{.5\textwidth}
......@@ -317,7 +317,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\includegraphics<1-2>[width=1.0\textwidth]{protocol/link-delay-model-detailed-1.jpg}
\includegraphics<3>[width=1.0\textwidth]{protocol/link-delay-model-detailed-2.jpg}
\includegraphics<4->[width=1.0\textwidth]{protocol/link-delay-model-detailed-3.jpg}\\
\tiny See: \textit{WR Calibration} [8]
\tiny See: \textit{WR Calibration} [9]
\end{center}
\end{columns}
% \pause\pause\pause\pause
......@@ -330,11 +330,11 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{frame}{Typical WR network}
\begin{center}
\includegraphics[width=.45\textwidth]{network/wr_network-enhanced_pro.pdf}
\includegraphics[width=.5\textwidth]{network/wr_network-enhanced_pro.pdf}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t,fragile]{White Rabbit Switch [9]}
\begin{frame}[t,fragile]{White Rabbit Switch [10]}
\begin{center}
\includegraphics[width=\textwidth]{switch/wrSwitch_v3_3.jpg}
\begin{itemize}\small
......@@ -350,16 +350,21 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Simplified block diagram of the hardware}
\vspace{-0.3cm}
\begin{center}
\includegraphics[width=.85\textwidth]{switch/switch3_4_simple_diagram_h.pdf}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Open \textbf{and} commercially available off-the-shelf}
\includegraphics[width=\textwidth]{misc/WR-zoo.jpg}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{WR Node [10]: carrier board + FMC}
\begin{frame}{WR Node [11, 12]: carrier board + FMC}
\vspace{-0.5cm}
\begin{center}
\includegraphics[width=10cm]{node/shw_kit2.png}
......@@ -402,7 +407,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{center}
\includegraphics[height=6.0cm]{measurements/meas_results2.pdf}\\
Reported in 2011 in [4]
Reported in 2011 in [13]
\end{center}
\end{frame}
......@@ -428,14 +433,14 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{itemize}\scriptsize
\item<1-> \textbf{PCB, FPGA, SFP} -- hardware delay uncertainty
\begin{itemize}\scriptsize
\item Calibration uncertainty: sdev of 2ps [7]
\item Linear dependency on temperature\\ (700ps over $-10..55^oC$ [6]):
\item Calibration uncertainty: sdev of 2ps [8]
\item Linear dependency on temperature\\ (700ps over $-10..55^oC$ [7]):
\begin{itemize}\tiny
\item CuteWR: tx $-8.4ps/K$, rx $13.3ps/K$ [6]
\item Switch: 8ps/K [7]
\item WR-Zen: 4ps/K [7]
\item CuteWR: tx $-8.4ps/K$, rx $13.3ps/K$ [7]
\item Switch: 8ps/K [8]
\item WR-Zen: 4ps/K [8]
\end{itemize}
\item Remedy: active compensation \\(for LHASSO, 50ps over $-10..55^oC$ [6])
\item Remedy: active compensation \\(for LHASSO, 50ps over $-10..55^oC$ [7])
% \item SFP delay dependency on input power, error up to 30ps [2]
\end{itemize}
\item<2-> \textbf{Bitslide} -- measurement uncertainty
......@@ -452,7 +457,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\includegraphics<2>[width=\textwidth]{protocol/bitslide.jpg}
\includegraphics<1>[width=\textwidth]{measurements/fixed-delays-temp-dependency.jpg}\\
\tiny
\textcolor<2>{white}{Figure source: [6]}
\textcolor<2>{white}{Figure source: [7]}
\end{center}
\end{columns}
......@@ -463,7 +468,11 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{center}
\includegraphics[width=\textwidth]{misc/inaccuracy-sources-variable-delays.jpg}
\end{center}
\begin{center}
\pause
$\alpha = \frac{\nu_g(\lambda_S)}{\nu_g(\lambda_M)} -1 = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}}$\\\vspace{0.2cm}
$\delta_{ms}~ = \frac{1 + \alpha}{2 + \alpha} \, (RTT - \sum \Delta - \sum \epsilon)$
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Medium asymmetry compensation}
......@@ -471,39 +480,57 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
% \includegraphics[height=2.3cm]{misc/inaccuracy-sources-variable-delays.jpg}
% \end{center}
\begin{columns}[c]
\column{0.7\textwidth}\vspace{-0.5cm}
\column{0.71\textwidth}\vspace{-0.5cm}
\textcolor{white}{dddd\\dddd}
\begin{itemize}\scriptsize
\item<1-> \textbf{SFP} -- tx wavelength uncertainty
\begin{itemize}\scriptsize
\item<2-> IEEE802.3ah allows nominal value departures\\(10nm at 1490nm, 50nm at 1310nm)
\item<3-> Linear dependency on SFP temp:
\begin{itemize}\tiny
\item SFP@1310nm: $0.11 ps/(K \cdot km)$ [6]
\item SFP@1490nm: $-0.51 ps/(K \cdot km)$ [6]
\item SFP@1550nm: $1.7ps/(K \cdot km)$ [7]
\item 1310nm: $0.4~~\sim0.5~~nm/K$ $\Rightarrow$ $~~~0.11 ps/(K \cdot km)$ [7]
\item 1490nm: $0.09\sim0.12 nm/K$ $\Rightarrow$ $-0.51 ps/(K \cdot km)$ [7]
\item 1550nm: ~~~~~~~~~$\approx0.1~~nm/K$ $\Rightarrow$ $~~~1.7~~ps/(K \cdot km)$ [8]
\end{itemize}
% \begin{itemize}\tiny
% \item 1310nm: $0.4\sim0.5 nm/K$ (AXGE-1254 SFP) [6]
% \item 1490nm: $0.09\sim0.12 nm/K$ (AXGE-3454 SFP) [6]
% \item 1550nm: $\approx0.1 nm/K$ [7]
% \end{itemize}
% \begin{itemize}\tiny
% \item 1310nm: $0.4\sim0.5 nm/K$, for G.652.D fiber: $0.11 ps/(K \cdot km)$ [6]
% \item 1490nm: $0.09\sim0.12 nm/K$, for G.652.D fiber: $-0.51 ps/(K \cdot km)$ [6]
% \item 1550nm: $0.1 nm/K$, for G.652.D fiber:$1.7ps/(K \cdot km)$ [7]
% \end{itemize}
% \item<4-> SFP temp-dependency for G652.D fiber:
% \begin{itemize}\tiny
% \item 1310nm: $0.11 ps/(K \cdot km)$ [6]
% \item 1490nm: $-0.51 ps/(K \cdot km)$ [6]
% \item 1550nm: $1.7ps/(K \cdot km)$ [7]
% \end{itemize}
\end{itemize}
\item<4-> \textbf{Fiber} -- chromatic dispersion variation
\item<5-> \textbf{Fiber} -- chromatic dispersion variation
\begin{itemize}\scriptsize
\item Linear dependency on fiber temp:
\begin{itemize}\tiny
\item G652.D at 1310/1490: $-0.2 ps/(K\cdot km)$ [6]
\item G652.D at 1310/1490: $-0.12 ps/(K\cdot km)$ [7]
\item G652.D at 1490/1550: $-0.05 ps/(K\cdot km)$ [7]
\item G.652.D at 1310/1490: $-0.2 ~~ps/(K\cdot km)$ [7]
\item G.652.D at 1310/1490: $-0.12 ps/(K\cdot km)$ [7]
\item G.652.D at 1490/1550: $-0.05 ps/(K\cdot km)$ [8]
\end{itemize}
\end{itemize}
\item<5-> Significant for links $>10km$ [7]
\item<6-> Remedy: temp-stabilized SFP, closer wavelength \\(C21\& C23 @ 1560.61 \& 1558.98 in SKA [7])
\item<6-> Significant for links $>10km$
\item<7-> Remedy: temp-stabilized SFP, closer wavelength \\(C21\& C23 @ 1560.61 \& 1558.98 in SKA [8])
\end{itemize}
\textcolor{white}{dddd\\dddd\\dddd\\dddd}
\column{0.45\textwidth}
\begin{center}\vspace{-0.5cm}
\includegraphics<3>[width=0.6\textwidth]{measurements/sfp-temp-dependence.jpg}
\includegraphics<4>[width=\textwidth]{measurements/fiber-temp-dependency.jpg}
\includegraphics<4>[width=0.8\textwidth]{measurements/sfp-temp-dependence.jpg}
\includegraphics<5>[width=\textwidth]{measurements/fiber-temp-dependency.jpg}
% \includegraphics<5->[width=\textwidth]{applications/SKA-DWDM.jpg}
\includegraphics<5->[width=\textwidth]{measurements/PBowen-link-errors.jpg}\textcolor{white}{d}\\
\textcolor<1-2,4->{white}{\tiny Figure source: [6]}\\
\textcolor<1-3>{white}{\tiny Figure source: [7]}
\includegraphics<6->[width=\textwidth]{measurements/PBowen-link-errors.jpg}\textcolor{white}{d}\\
\textcolor<1-3,5->{white}{\tiny Figure source: [7]}\\
\textcolor<1-4>{white}{\tiny Figure source: [8]}
% \tiny\pause\pause\pause
% Figure source: [1]
\end{center}
......@@ -544,7 +571,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\end{itemize}
\item<3-> \textbf{GTX}
\begin{itemize}\scriptsize
\item Flicker PM noise: -97 dBc at 1 Hz
\item Flicker PM noise: -100 dBc at 1 Hz
\item White PM noise: -106 dBc\\ MDEV at $\tau=1s$ to 4E-13
\end{itemize}
\item<4-> Remedy: none, inherent to technology
......@@ -557,7 +584,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\end{columns}\vspace{0.1cm}
\begin{center}
\tiny NOTE: Carrier is 10MHz\\
\tiny All above data is based on [13]
\tiny All above data is based on [14]
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
......@@ -574,17 +601,18 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{itemize}\scriptsize
\item Phase noise leaking from the local oscillator
\item Instabilities induced by cooling airflow
\item Remedy: increase bandwidth (see [14]) or better oscillator (see daughterboard [15])
\item Remedy: increase bandwidth (see [15]) or better oscillator (see daughterboard [16])
\end{itemize}
\item<3->\textbf{External reference input} - Grandmaster only
\begin{itemize}\scriptsize
\item Noisy internal MMCM PLL
\item Noisy internal Virtex-6 MMCM PLL
\item Large phase noise power at 10kHz to 2MHz
\item Remedy: external PLL to synthesize 62.5MHz from 10MHz (see daughterboard [15])
\item Phase noise above DDMTD Nyquist (1.9kHz) bandwidth folds back to baseband
\item Remedy: external PLL to synthesize 62.5MHz from 10MHz (see daughterboard [16])
\end{itemize}
\end{itemize}
\end{itemize}%\vspace{-0.2cm}
\begin{table}[ht]
\centering
\tiny
......@@ -602,8 +630,9 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\column{0.5\textwidth}
\begin{center}\vspace{-0.5cm}\vspace{0.5cm}
\includegraphics<1-2>[width=.99\textwidth]{measurements/phase_noise_v3_4.pdf}
\includegraphics<3>[width=1.08\textwidth]{switch/mmcm_noise.png}
\includegraphics<4>[width=.45\textheight, angle=90]{measurements/WRSlowJitter/rsz_3d_image__1_.jpg}
\includegraphics<3>[width=0.98\textwidth]{switch/mmcm_noise2.jpg}
\includegraphics<4>[width=.99\textwidth]{measurements/phase_noise_v3_4.pdf}
\includegraphics<5>[width=.45\textheight, angle=90]{measurements/WRSlowJitter/rsz_3d_image__1_.jpg}
\tiny
\begin{table}[!ht]
\centering
......@@ -620,9 +649,9 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\end{table}%\vspace{-0.3cm}
\end{center}
\end{columns}
\end{columns}\vspace{-0.5cm}
\begin{center}
\tiny Data from [14]
\tiny Data from [15]
\end{center}
\end{frame}
......@@ -632,7 +661,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{frame}{Test setup for switch with Low Jitter Daughterboard}
\begin{center}
\includegraphics[width=\textwidth]{measurements/WRSlowJitter/rsz_experimental_setup.png}\\
\tiny See more: [15]
\tiny See more: [16]
\end{center}
\end{frame}
......@@ -656,12 +685,12 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\includegraphics[width=.45\textwidth]{measurements/WRSlowJitter/GM+BC_MDEV.jpg}
\end{center}
\begin{itemize}\scriptsize
\item Jitter improvement [13, 15]
\item Jitter improvement [14, 16]
\begin{itemize}\scriptsize
\item GM: 9ps to 1ps RMS 1Hz-100kHz
\item BC: 11ps to $<2$ps RMS 1Hz-100kHz
\end{itemize}
\item MDEV improvement [13, 15]
\item MDEV improvement [14, 16]
\begin{itemize}\scriptsize
\item GM: 2E-12 to $<$5E-13 $\tau$=1s ENBW 50Hz
\item BC: 4E-12 to $<$7E-13 $\tau$=1s ENBW 50Hz
......@@ -676,17 +705,17 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\begin{frame}{Current developments}
\begin{itemize}\small
\item<1-> Standardization in IEEE 1588:
\item<1-> Standardization in IEEE 1588 [17]:
\begin{itemize}\scriptsize
\item High Accuracy sub-committee dedicated to WR
\item High Accuracy, a.k.a. WR, to become a third Default PTP Profile
\item Revised standard expected in 2019.
\end{itemize}
\item<2-> Long-haul link
\item<2-> Long-haul link [18, 19]:
\begin{itemize}\scriptsize
\item Triggered by National Time Labs and Radio Telescope
\item \textbf{Sub-ns} is achievable on links on \textbf{up to 80km}
\item \textbf{Ns on 137km} bidirectional \& \textbf{$\pm$2.5ns on 950km} unidirectional links
\item \textbf{Sub-ns on 80km} and \textbf{ns on 137km} links with single bidirectional fiber
\item \textbf{$\pm$2.5ns on 950km} links with two unidirectional fibers
\end{itemize}
% \item<3-> Absolute Calibration
\item<3-> WR-based applications
......@@ -715,7 +744,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
% \end{block}
% \end{frame}
%
\begin{frame}{RF over WR a.k.a. Distributed DDS}
\begin{frame}{RF over WR a.k.a. Distributed DDS [20]}
\begin{center}
\includegraphics[width=\columnwidth]{applications/remote_dds.pdf}
\end{center}
......@@ -729,7 +758,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\end{block}
\end{frame}
\begin{frame}{Distributed oscilloscope}
\begin{frame}{Distributed oscilloscope [21]}
\begin{center}
\includegraphics[width=0.9\textwidth]{applications/distr_oscill.pdf}
\end{center}
......@@ -781,27 +810,65 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\backupbegin
\begin{frame}{References}
\tiny
\begin{enumerate}
\item \textbf{White Rabbit Project:}\url{https://www.ohwr.org/project/white-rabbit/wikis}
\item \textbf{Companies selling WR:}\url{https://www.ohwr.org/project/white-rabbit/wrcompanies}
\item \textbf{Users of WR:}\url{https://www.ohwr.org/project/white-rabbit/WRUsers}
\item \textbf{White Rabbit Applications and Enhancements}, M.Lipinski et. al, ISPCS2018\\\url{https://www.ohwr.org/project/white-rabbit/uploads/7f9e67258850d5c036629a509bf2e124/ISPCS2018-WRApplicatoinsAndEnhancements.pdf}
\item \textbf{White Rabbit Newsletter, September 2018} \\\url{https://www.ohwr.org/project/white-rabbit/wikis/newsletter-2018-09}
\item \textbf{Temperature Effect and Correction Method of White Rabbit Timing Link}; Hongming Li, Guanghua Gong, Weibin Pan, Qiang Du, Jianmin Li
\item \textbf{DWDM Stabilized Optics for White Rabbit}, Paul Boven
\item \textbf{WR Calibration}, version 1.1, G.Daniluk\\ \url{www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf}
\item \textbf{White Rabbit Switch:} \url{https://www.ohwr.org/project/white-rabbit/wikis/Switch}
\item \textbf{White Rabbit Node:} \url{https://www.ohwr.org/project/white-rabbit/wikis/Node}
\item \textbf{White Rabbit PTP Core:} \url{https://www.ohwr.org/project/wr-cores/wikis/Wrpc-core}
\item \textbf{White Rabbit: a PTP application for robust sub-nanosecond synchronization}, M. Lipiński et el, ISPCS2011\\\url{https://www.ohwr.org/project/white-rabbit/uploads/cfc34350adcbf5156f968fac0b9301b5/ISPCS2011_WR.pdf}
\item \textbf{White Rabbit Clock Synchronization: Ultimate Limits on Close-In Phase Noise and Short-Term Stability Due to FPGA Implementation}, M.Rizzi et el, UFFC-T, 2018\\\url{https://www.ohwr.org/project/white-rabbit/uploads/253cbfc17d2b43cd445b68348aee0374/Submitted_IEEE.pdf}
\item \textbf{White Rabbit Clock Characteristics}, M. Rizzi et el, ISPCS2016\\\url{https://www.ohwr.org/project/white-rabbit/uploads/2fa1a438446fc6c85b4540faecf1017a/ISPCS2016-WRClockCharacteristics.pdf}
\item \textbf{WRS Low Jitter Daughterboard:}\url{www.ohwr.org/projects/wrs-low-jitter}
\end{enumerate}
% \begin{enumerate}
% \item \textbf{White Rabbit Project:}\url{https://www.ohwr.org/project/white-rabbit/wikis}
% \item \textbf{Companies selling WR:}\url{https://www.ohwr.org/project/white-rabbit/wrcompanies}
% \item \textbf{Users of WR:}\url{https://www.ohwr.org/project/white-rabbit/WRUsers}
% \item \textbf{White Rabbit Applications and Enhancements}, M.Lipinski et. al, ISPCS2018\\\url{https://www.ohwr.org/project/white-rabbit/uploads/7f9e67258850d5c036629a509bf2e124/ISPCS2018-WRApplicatoinsAndEnhancements.pdf}
% \item \textbf{White Rabbit Newsletter, September 2018} \\\url{https://www.ohwr.org/project/white-rabbit/wikis/newsletter-2018-09}
% \item \textbf{Temperature Effect and Correction Method of White Rabbit Timing Link}; Hongming Li, Guanghua Gong, Weibin Pan, Qiang Du, Jianmin Li
% \item \textbf{DWDM Stabilized Optics for White Rabbit}, Paul Boven
% \item \textbf{WR Calibration}, version 1.1, G.Daniluk\\ \url{www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf}
% \item \textbf{White Rabbit Switch:} \url{https://www.ohwr.org/project/white-rabbit/wikis/Switch}
% \item \textbf{White Rabbit Node:} \url{https://www.ohwr.org/project/white-rabbit/wikis/Node}
% \item \textbf{White Rabbit PTP Core:} \url{https://www.ohwr.org/project/wr-cores/wikis/Wrpc-core}
% \item \textbf{White Rabbit: a PTP application for robust sub-nanosecond synchronization}, M. Lipiński et el, ISPCS2011\\\url{https://www.ohwr.org/project/white-rabbit/uploads/cfc34350adcbf5156f968fac0b9301b5/ISPCS2011_WR.pdf}
% \item \textbf{White Rabbit Clock Synchronization: Ultimate Limits on Close-In Phase Noise and Short-Term Stability Due to FPGA Implementation}, M.Rizzi et el, UFFC-T, 2018\\\url{https://www.ohwr.org/project/white-rabbit/uploads/253cbfc17d2b43cd445b68348aee0374/Submitted_IEEE.pdf}
% \item \textbf{White Rabbit Clock Characteristics}, M. Rizzi et el, ISPCS2016\\\url{https://www.ohwr.org/project/white-rabbit/uploads/2fa1a438446fc6c85b4540faecf1017a/ISPCS2016-WRClockCharacteristics.pdf}
% \item \textbf{WRS Low Jitter Daughterboard:}\url{www.ohwr.org/projects/wrs-low-jitter}
% \item \textbf{Methods to Increase Reliability and Ensure Determinism in a White Rabbit Network}, M. Lipinski\\\url{http://cds.cern.ch/record/2261452}
% \item \textbf{Trigger and RF Distribution using White Rabbit}, T. Wlostowski et al\\\url{http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/wec3o01.pdf}
% \item \textbf{White Rabbit Trigger Distribution:}\url{https://www.ohwr.org/project/wrtd/wikis/home}
% % \url{https://indico.cern.ch/event/815290/#1-trigger-distribution-over-wh}
% \end{enumerate}
\begin{columns}[c]
\column{.01\textwidth}
\column{1.15\textwidth}
$[1]$ \textbf{White Rabbit Project:} \url{www.ohwr.org/project/white-rabbit/wikis}\\
$[2]$ \textbf{Methods to Increase Reliability and Ensure Determinism in a WR Network}, M. Lipinski, \url{cds.cern.ch/record/2261452}\\
$[3]$ \textbf{Companies selling WR:} \url{www.ohwr.org/project/white-rabbit/wrcompanies}\\
$[4]$ \textbf{Users of WR:} \url{www.ohwr.org/project/white-rabbit/WRUsers}\\
$[5]$ \textbf{White Rabbit Applications and Enhancements}, M.Lipinski et al., ISPCS2018, \url{www.ohwr.org/project/white-rabbit/uploads/7f9e67258850d5c036629a509bf2e124/ISPCS2018-WRApplicatoinsAndEnhancements.pdf}\\
$[6]$ \textbf{White Rabbit Newsletter, September 2018: } \url{www.ohwr.org/project/white-rabbit/wikis/newsletter-2018-09}\\
$[7]$ \textbf{Temperature Effect and Correction Method of White Rabbit Timing Link}; H. Li et al., \url{arxiv.org/abs/1406.4223}\\
$[8]$ \textbf{DWDM Stabilized Optics for White Rabbit}, P. Boven, \url{ieeexplore.ieee.org/document/8409035}\\
$[9]$ \textbf{WR Calibration}, version 1.1, G.Daniluk, \url{www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf}\\
$[10]$ \textbf{White Rabbit Switch:} \url{www.ohwr.org/project/white-rabbit/wikis/Switch}\\
$[11]$ \textbf{White Rabbit Node:} \url{www.ohwr.org/project/white-rabbit/wikis/Node}\\
$[12]$ \textbf{White Rabbit PTP Core:} \url{www.ohwr.org/project/wr-cores/wikis/Wrpc-core}\\
$[13]$ \textbf{White Rabbit: a PTP application for robust sub-nanosecond synchronization}, M. Lipiński et el, ISPCS2011\\
~~~~~~~ \url{www.ohwr.org/project/white-rabbit/uploads/cfc34350adcbf5156f968fac0b9301b5/ISPCS2011_WR.pdf}\\
$[14]$ \textbf{White Rabbit Clock Synchronization: Ultimate Limits on Close-In Phase Noise and Short-Term Stability Due to FPGA Implementation}, M.Rizzi et el, UFFC-T, 2018\\
~~~~~~~ \url{www.ohwr.org/project/white-rabbit/uploads/253cbfc17d2b43cd445b68348aee0374/Submitted_IEEE.pdf}\\
$[15]$ \textbf{White Rabbit Clock Characteristics}, M. Rizzi et el., ISPCS2016, \url{www.ohwr.org/project/white-rabbit/uploads/2fa1a438446fc6c85b4540faecf1017a/ISPCS2016-WRClockCharacteristics.pdf}\\
$[16]$ \textbf{WRS Low Jitter Daughterboard:} \url{www.ohwr.org/projects/wrs-low-jitter}\\
$[17]$ \textbf{White Rabbit standardization:}
\url{www.ohwr.org/projects/wr-std/wiki/} (\url{www.ohwr.org/projects/wr-std/wiki/wrin1588})
$[18]$ \textbf{WR Precision Time Protocol on Long-Distance Fiber Links}, E. F. Dierikx et al., \url{ieeexplore.ieee.org/document/7383303}\\
$[19]$ \textbf{White Rabbit Time Transfer on Medium and Long Fibre Hauls at INRIM}, G. Fantino et al., \\
~~~~~~~ \url{www.ion.org/publications/abstract.cfm?articleID=12598}\\
$[20]$ \textbf{Trigger and RF Distribution using White Rabbit}, T. Wlostowski et al., ICALEPCS2015, \\
~~~~~~~ \url{accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/wec3o01.pdf}\\
$[21]$ \textbf{White Rabbit Trigger Distribution: }
\url{www.ohwr.org/project/wrtd/wikis/home}\\
~~~~~~~ \url{indico.cern.ch/event/815290/\#1-trigger-distribution-over-wh}\\
% \column{.01\textwidth}
\end{columns}
\end{frame}
\begin{frame}{References}
\begin{frame}{Backup slides}
\begin{center}
Backup slides
\end{center}
......@@ -821,39 +888,47 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
\includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_mdev.png}
\end{center}
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{}
% \begin{frame}{Performance Enhancements}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{itemize}\footnotesize
% \item<1-> Compensation of hardware temperature variation
% \begin{itemize}\scriptsize
% \item Triggered by cosmic ray detectors
% \item Active correction of hardware temperature variation
% \item Pk-pk variation from 700 ps to \textbf{$<$150 ps with sdev $<$50ps (-10 to 50$^o$C)}
% \end{itemize}
% \item<2-> Link asymmetry correction
% \begin{itemize}\scriptsize
% \item Triggered by radio telescope (Square Kilometre Array)
% \item At 1310/1490nm, temp variation -0.12 ps/km/K (3ns for 80km over 50$^o$C)
% \item \textbf{Sub-ns for 80km over 50$^o$C} using DWDM SFP on ITU channels C21/C22 (1560.61/1558.98 nm)
% \end{itemize}
% \item<3-> Absolute calibration
% \begin{itemize}\scriptsize
% \item Triggered by
% \item
% \item
% \end{itemize}
% \item<4-> Long-haul link
% \begin{itemize}\scriptsize
% \item Triggered by National Time Labs and Radio Telescope
% \item \textbf{Sub-ns} is achievable on links on \textbf{up to 80km}
% \item \textbf{Ns on 137km} bidirectional \& \textbf{$\pm$2.5ns on 950km} unidirectional links
% \end{itemize}
% \item<5-> Jitter and clock stability (next slide)
% \end{itemize}
%
% \end{frame}
\subsection{Standardization}
\begin{frame}{WR standardization in IEEE1588}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{.8\textwidth}
\begin{itemize}\small
\item<1-> IEEE standards are revised periodically
\item<2-> The IEEE1588 is revised by industry/academia
\item<3-> Revision performed in 5 sub-committees \\\scriptsize(\url{https://ieee-sa.imeetcentral.com/1588public/})
\item<4-> High Accuracy sub-committee dedicated to WR
\begin{itemize}\scriptsize
\item<6-> Generalization of WR methods
\item<6-> Inclusion of the generalizations
\end{itemize}
\item<7-> Revised IEEE1588 expected in 2019
\end{itemize}
\column{.4\textwidth}
\begin{center}
\includegraphics<1-2>[width=0.8\textwidth]{p1588/p1588-1.jpg}
\includegraphics<3>[width=0.8\textwidth]{p1588/p1588-2.jpg}
\includegraphics<4>[width=0.8\textwidth]{p1588/p1588-3.jpg}
\includegraphics<5->[width=0.8\textwidth]{p1588/p1588-4.jpg}
\end{center}
\end{columns}
\end{frame}
\begin{frame}{WR standardization in IEEE1588}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
\includegraphics<1>[width=1.0\textwidth]{p1588/HAin1588-0.jpg}
\includegraphics<2>[width=1.0\textwidth]{p1588/HAin1588-1.jpg}
\includegraphics<3>[width=1.0\textwidth]{p1588/HAin1588-2.jpg}
\includegraphics<4>[width=1.0\textwidth]{p1588/HAin1588-3.jpg}
\includegraphics<5>[width=1.0\textwidth]{p1588/HAin1588-4.jpg}
\includegraphics<6>[width=1.0\textwidth]{p1588/HAin1588-5.jpg}
\end{center}
\begin{center}
\scriptsize
\textbf{White Rabbit integration into IEEE1588-20XX as High Accuracy [17]:} \url{https://www.ohwr.org/projects/wr-std/wiki/wrin1588}
\end{center}
\end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{}
......@@ -943,44 +1018,7 @@ INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{}
% \begin{frame}{Performance Enhancements}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{itemize}\scriptsize
% \item Triggered by National Laboratories and RF distribution
% \item Allan deviation (ADEV) from 1e-11 to \textbf{1e-12} over 1s
% \item Random jitter from 11 to \textbf{1.1ps RMS} (1 Hz to 100kHz)
% \item Ongong work to achieve jitter of \textbf{sub-100fs RMS} (100Hz to 20MHz)
% \end{itemize}
%
% \end{frame}
%
% \begin{frame}{WR switch clocking scheme}{Thanks to Mattia Rizzi for the work and
% the figures in this section}
% \begin{center}
% \includegraphics[width=.85\textwidth]{switch/wrs_v3_3_clocking.png}
% \end{center}
% \end{frame}
%
% \begin{frame}{MMCM noise}
% \begin{center}
% \includegraphics[height=.7\textheight]{switch/mmcm_noise.png}
% \end{center}
% \end{frame}
%
% \begin{frame}{WR Switch: low jitter daughterboard}
% \begin{columns}
% \column{.35\textwidth}
% \includegraphics[width=.8\textheight, angle=90]{measurements/WRSlowJitter/rsz_3d_image__1_.jpg}
% \column{.65\textwidth}
% \begin{itemize}
% \item Current release of WRS in GM mode has sub-optimal performance on both jitter (9ps RMS 1Hz-100kHz) and ADEV (1.4E-11 $\tau$=1s ENBW 50Hz)
% \item A daughterboard was designed, produced and tested to improve the performance
% \item Modified WRS improves performance on both jitter ($<$2ps RMS 10Hz-100kHz) and ADEV ($<$5E-13 $\tau$=1s ENBW 50Hz) in GM mode
% \end{itemize}
% \end{columns}
% \end{frame}
\backupend
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment