White Rabbit in Financial Markets
Time Distribution in Deutsche Börse’s T7® Trading Network
About the speaker

- Degree in computer science from University of Applied Sciences in Darmstadt (1994)
- Working in technology for financial trading since then
- Various roles in two investment banks (Frankfurt, London)
- Performance engineer in a technology-driven trading firm (Amsterdam)

Joined Deutsche Börse in 2016

- Trading IT, monitoring, infrastructure, co-location, and part-time chief cable measurer
- Deutsche Börse operates Xetra, the reference market for exchange trading in German shares and ETFs, and Eurex, a leading global derivatives exchange
Agenda

3 Overview

7 Central Limit Order Book

11 Asset Prices

18 T7® Co-Location

21 White Rabbit at Deutsche Börse

29 Services for our customers

33 Experiences

36 Conclusion

39 Appendix

45
3

Overview
Obsessed with Time

“The financial industry has easily become the most obsessed with time”

-Balaji Prabakar, Stanford University

“The New York Times

“Time Split to the Nanosecond Is Precisely What Wall Street Wants”

Obsessed with Time

2008

2018
Obsessed with Time
How did this happen?
From trading floor to electronic markets
Central Limit Order Book
Central Limit Order Book (1)

- List of buy orders on the “Bid” side
- List of sell orders on the “Ask” side
- Sorted by price
- Priority on each price level by time
- Price-time priority is the most used electronic execution model

<table>
<thead>
<tr>
<th>LastTime</th>
<th>LastVolume</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20:10.123</td>
<td>165</td>
<td>73.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BidCount</th>
<th>BidVolume</th>
<th>Bid</th>
<th>Ask</th>
<th>AskVolume</th>
<th>AskCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>624</td>
<td>73.04</td>
<td>73.05</td>
<td>3081</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1474</td>
<td>73.03</td>
<td>73.06</td>
<td>2662</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>2505</td>
<td>73.02</td>
<td>73.07</td>
<td>5854</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>2843</td>
<td>73.01</td>
<td>73.08</td>
<td>4284</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>1925</td>
<td>73.00</td>
<td>73.09</td>
<td>6388</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>2328</td>
<td>72.99</td>
<td>73.10</td>
<td>1908</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>2814</td>
<td>72.98</td>
<td>73.11</td>
<td>1151</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>967</td>
<td>72.97</td>
<td>73.12</td>
<td>534</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1803</td>
<td>72.96</td>
<td>73.13</td>
<td>4090</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>938</td>
<td>72.95</td>
<td>73.14</td>
<td>1104</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ask</th>
<th>AskVolume</th>
<th>QueuePos</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.05</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>73.05</td>
<td>791</td>
<td>2</td>
</tr>
<tr>
<td>73.05</td>
<td>1368</td>
<td>3</td>
</tr>
<tr>
<td>73.05</td>
<td>685</td>
<td>4</td>
</tr>
<tr>
<td>73.05</td>
<td>137</td>
<td>5</td>
</tr>
</tbody>
</table>

http://www.boerse-frankfurt.de/webinare-boersenwissen
Example:
We want to buy 100 shares at a price of 73.05
Q: Which of the 5 sell orders is “matched” with our buy order?
A: The sell order which entered the order book the **earliest**.

Implication:
The faster you are, the higher the probability of an order being executed as desired. True for both sides of the trade (buyer and seller)
Matching Algorithms

Price Time

- Priority is determined by price then time
- FIFO queue per price level
- Higher queue priority increases probability of being matched
- The most common matching algorithm
11

Asset Prices
Asset Prices

Efficient-market hypothesis: asset prices fully reflect all available information

⇒ New information (events) affect prices

Examples:
- News
- Changes in interest rates
- Release of economic indicators (e.g. unemployment figures)
- The central limit order book of a financial instrument (e.g. stock, bond) itself
- Prices of correlated instruments

Event source can be:
- Remote (send information over WAN)
- Local (LAN, co-location)
Correlated Asset Prices – Example

Euro BUND Future / Euro BOBL Future
T7® Architecture – Price Information

Matching Engine

<table>
<thead>
<tr>
<th>LastTrade</th>
<th>LastVolume</th>
<th>LastPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>10</td>
<td>73.04</td>
</tr>
<tr>
<td>0.21</td>
<td>15</td>
<td>73.05</td>
</tr>
<tr>
<td>0.22</td>
<td>50</td>
<td>73.06</td>
</tr>
<tr>
<td>0.23</td>
<td>15</td>
<td>73.07</td>
</tr>
<tr>
<td>0.24</td>
<td>50</td>
<td>73.08</td>
</tr>
<tr>
<td>0.25</td>
<td>15</td>
<td>73.09</td>
</tr>
<tr>
<td>0.26</td>
<td>50</td>
<td>73.10</td>
</tr>
<tr>
<td>0.27</td>
<td>15</td>
<td>73.11</td>
</tr>
<tr>
<td>0.28</td>
<td>50</td>
<td>73.12</td>
</tr>
<tr>
<td>0.29</td>
<td>15</td>
<td>73.13</td>
</tr>
<tr>
<td>0.30</td>
<td>50</td>
<td>73.14</td>
</tr>
</tbody>
</table>

Prices (A Stream) UDP Multicast

Prices (B Stream) UDP Multicast

Trading Participant
T7® Architecture – Interaction (placing orders)

Matching Engine

Backup

Order Entry Gateway 1
Order Entry Gateway 2
Order Entry Gateway N

Infiniband

Transactions (TCP)

Trading Participant

Deutsche Börse Group
T7® Architecture

Backup

Matching Engine

Prices (A Stream)
UDP Multicast

Prices (B Stream)
UDP Multicast

Infiniband

Order Entry Gateway 1

Order Entry Gateway 2

Order Entry Gateway N

Transactions (TCP)

Trading Participant
T7® Co-location
Zoom in to a single matching engine

Median round-trip from order entry to acknowledgement ≈ 60µs (2) ➔ (7)
The fastest participants have sub 100ns response times (1) ➔ (2)
T7® Co-location

Timestamps
T7® Co-location

Scale (> 500 capture ports, > 60 timestamping devices)

> 260 Order Entry lines captured (> 500 capture ports)

Identical setup regardless of participant room location and assigned access switch
White Rabbit at Deutsche Börse
White Rabbit in T7® Co-location
60+ timestamping devices in 4 datacentre modules
Networking at an exchange is atypical (bursts)

How do we measure this?

Why do we need something as precise as White Rabbit is?

<table>
<thead>
<tr>
<th>switch.in</th>
<th>switch.out</th>
<th>delta.l</th>
<th>delta.o</th>
<th>latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:38:58.056,303,467</td>
<td>15:38:58.056,303,736</td>
<td>0</td>
<td>0</td>
<td>269</td>
</tr>
<tr>
<td>15:38:58.056,303,473</td>
<td>15:38:58.056,303,855</td>
<td>6</td>
<td>119</td>
<td>382</td>
</tr>
<tr>
<td>15:38:58.056,303,477</td>
<td>15:38:58.056,304,095</td>
<td>4</td>
<td>240</td>
<td>618</td>
</tr>
<tr>
<td>15:38:58.056,303,478</td>
<td>15:38:58.056,303,976</td>
<td>1</td>
<td>-119</td>
<td>498</td>
</tr>
<tr>
<td>15:38:58.056,303,505</td>
<td>15:38:58.056,304,217</td>
<td>27</td>
<td>241</td>
<td>712</td>
</tr>
<tr>
<td>15:38:58.056,303,542</td>
<td>15:38:58.056,304,335</td>
<td>37</td>
<td>118</td>
<td>793</td>
</tr>
<tr>
<td>15:38:58.056,303,548</td>
<td>15:38:58.056,304,457</td>
<td>6</td>
<td>122</td>
<td>909</td>
</tr>
<tr>
<td>15:38:58.056,303,589</td>
<td>15:38:58.056,304,575</td>
<td>41</td>
<td>118</td>
<td>986</td>
</tr>
<tr>
<td>15:38:58.056,303,593</td>
<td>15:38:58.056,304,697</td>
<td>4</td>
<td>122</td>
<td>1104</td>
</tr>
<tr>
<td>15:38:58.056,303,651</td>
<td>15:38:58.056,304,815</td>
<td>58</td>
<td>118</td>
<td>1164</td>
</tr>
<tr>
<td>15:38:58.056,305,335</td>
<td>15:38:58.056,309,250</td>
<td>44</td>
<td>99</td>
<td>3915</td>
</tr>
<tr>
<td>15:38:58.056,305,674</td>
<td>15:38:58.056,309,894</td>
<td>82</td>
<td>100</td>
<td>4220</td>
</tr>
</tbody>
</table>
T7® Time synchronisation
White Rabbit synchronised timestamps
T7® Time synchronisation
How would we cope with PTP?

From outer network perimeter to order entry gateway
We use White Rabbit

From outer network perimeter to just before order entry gateway

WR time sync is fine

Burst of messages queuing
White Rabbit
Timestamping Devices synchronised by 1PPS
White Rabbit
Timestamping Devices synchronised by 1PPS
Services for our customers
Services for our customers

1. High-Precision Timestamp File (what is my delta to faster competitors)
2. Customer can now synchronise with our WR master
3. Customer can now get UTC from our WR
High Precision Timestamp File

Theoretical minimum (2736 ns)

*Distribution of $t_{3n} - t_9 - \text{median}(t_{9d} - t_9) - \text{median} (t_{3n-t_3a})$ shown

Before (using PTP)
High Precision Timestamp File

Fastest reaction ~ 2820 ns (84 ns net)

After (White Rabbit)

Theoretical minimum (2736 ns)

*Distribution of t_3a – t_9d
Feedback

Normal Operation – Sync error in timestamping devices is less than +/- 1ns
Feedback

Planned work on GPS receiver on a Saturday
GPS service was restored by 11:00 (yellow bar)
Conclusion
Conclusion

We have reached our goal of sub 10ns synchronisation of all capture devices.

We realize that we are not using all of White Rabbit’s features. Essentially, we use it to distribute 1PPS over fibre optic cables. We look forward to having more vendor support for White Rabbit in the future. This would enable full end-to-end White Rabbit time distribution.

We are confident enough to provide White Rabbit based services to real, paying customers.

We would like to thank the White Rabbit project and community for all their hard work.

Also, many thanks to Cesar Prados and Ralph Baer at GSI for giving us our first White Rabbit demonstration.
Thank you for your attention

Contact
Andreas Lohr
E-Mail
andreas.lohr@deutsche-boerse.com
Matching Algorithms

Pro Rata

- Priority is determined by price and proportionate to the total volume on the price level
- Used in some option markets (e.g. USA)

Matching Algorithms
Measures to Reduce Need for Speed

Actual

- Various “Speed Bumps”
 - Magic shoe box = long box of coiled up cable
 - “Latency floor”

- Last Look
 - Liquidity provider has additional time to device whether to accept a trade or not
 - Used in foreign exchange markets (currencies)

- Passive Liquidity Protection on Eurex
 - New orders that could match with resting orders in the limit order book will be deferred
 - For options
Matching Algorithms
Measures to Reduce Need for Speed

Proposals

- Frequent Batch Auctions
 - https://faculty.chicagobooth.edu/eric.budish/research/HFT-FrequentBatchAuctions.pdf
All intellectual property, proprietary and other rights and interests in this publication and the subject matter hereof (other than certain trademarks and service marks listed below) are owned by DBAG and its affiliates and subsidiaries including, without limitation, all patent, registered design, copyright, trademark and service mark rights. While reasonable care has been taken in the preparation of this publication to provide details that are accurate and not misleading at the time of publication DBAG, Clearstream, Eurex, Clearing, Eurex Bonds, Eurex Repo as well as the Eurex Exchanges and their respective servants and agents (a) do not make any representations or warranties regarding the information contained herein, whether express or implied, including without limitation any implied warranty of merchantability or fitness for a particular purpose or any warranty with respect to the accuracy, correctness, quality, completeness or timeliness of such information, and (b) shall not be responsible or liable for any third party’s use of any information contained herein under any circumstances, including, without limitation, in connection with actual trading or otherwise or for any errors or omissions contained in this publication. This publication is published for information purposes only and shall not constitute investment advice respectively does not represent or assure, if any, that any investment would be profitable or would not lose money or that any investment advice is or will be correct. This publication is not intended for solicitation purposes or to provide investment advice or to engage in any other transaction. This publication is not intended for solicitation purposes but only for use as general information. All descriptions, examples and calculations contained in this publication are for illustrative purposes only.

Eurex and Eurex Clearing offer services directly to members of the Eurex exchanges respectively to clearing members of Eurex Clearing. Those who desire to trade any products available on the Eurex market or who desire to offer and sell any such products to others or who desire to possess a clearing license of Eurex Clearing in order to participate in the clearing process provided by Eurex Clearing, should consider legal and regulatory requirements of those jurisdictions relevant to them, as well as the risks associated with such products, before doing so.

Eurex derivatives are currently not available for offer, sale or trading in the United States or by United States persons (other than EURO STOXX 50® Index Futures, EURO STOXX 50® ex Financials Index Futures, EURO STOXX® Select Dividend 30 Index Futures, EURO STOXX® Index Futures, EURO STOXX® Large/Md/Small Index Futures, STOXX® Europe 50 Index Futures, STOXX® Europe 600 Index Futures, STOXX® Europe 600 Banks/Industrial Goods & Services/Insurance/Media/Travel & Leisure/Utilities Futures, STOXX® Europe Large/Md/Small 200 Index Futures, Dow Jones Global Titans 50 IndexSM Futures (EUR & USD), DAX®/Mini-DAX®/MDAX®/TecDAX® Futures, SMIM® Futures, SLI® Swiss Leader Index® Futures, MSCI World (FMWO, FMWP, FMWN)/Europe (FMEU, FMEP)/ Europe Value/Europe Growth/Emerging Markets (FMEM, FMEF, FMEI)/Emerging Markets Latin America/Emerging Markets EMEA/Emerging Markets Asia/China Free/India/Japan/Malaysia/South Africa/Thailand/AC Asia Pacific ex Japan Index Futures, TA-25 Index Futures, Daily Futures on TAIEX Futures, VSTOXX® Futures, Gold and Silver Futures as well as Eurex FX, property and interest rate derivatives).

Trademarks and Service Marks

Bux®®, DAX®, DivDAX®, eb.rexx®, Eurex®, Eurex Bonds®, Eurex Repo®, Eurex Strategy WizardSM, Euro GC Pooling®, FDAX®, FWB®, GC Pooling®, GCP®, MDAX®, ODAX®, SDAX®, TecDAX®, USD GC Pooling®, VDAX®, VDAX-NEW® and Xetra® are registered trademarks of DBAG. All MSCI indexes are service marks and the exclusive property of MSCI Barra, ATX®, ATX® five, CEC® and RDX® are registered trademarks of Vienna Stock Exchange AG. IP® UK Annual All Property Index is a registered trademark of Investment Property Databank Ltd. IPD and has been licensed for the use by Eurex for derivatives. SLI®, SMI® and SMIM® are registered trademarks of SIX Swiss Exchange AG. The STOXX® indexes, the data included therein and the trademarks used in the index names are the intellectual property of STOXX Limited and/or its licensors Eurex derivatives based on the STOXX® indexes are in no way sponsored, endorsed, sold or promoted by STOXX and its licensors and neither STOXX nor its licensors shall have any liability with respect thereto. Dow Jones is a service mark of Dow Jones & Company, Inc. All derivatives based on these index names are not sponsored, endorsed, sold or promoted by Dow Jones & Company, Inc.

Dow Jones & Company, Inc. does not make any representation regarding the advisability of trading or of investing in such products. Bloomberg Commodity IndexSM and any related sub-indexes are service marks of Bloomberg L.P. All references to London Gold and Silver Fixing prices are used with the permission of The London Gold Market Fixing Limited as well as the London Silver Market Fixing Limited, which, for the avoidance of doubt has no involvement with and accepts no responsibility whatsoever for the underlying product to which the Fixing prices may be referenced. PCS® and Property Claim Services® are registered trademarks of ISO Services, Inc. Korea Exchange, KRX, KOSPI and KOSPI 200 are registered trademarks of Korea Exchange Inc. Taiwan Futures Exchange and TAIEX® are registered trademarks of Taiwan Futures Exchange Corporation. Taiwan Stock Exchange, TWSE and TAEX are the registered trademarks of Taiwan Stock Exchange Corporation. BSE and SENSEX are trademarks/service marks of Bombay Stock Exchange (BSE) and all rights accruing from the same, statutory or otherwise, wholly vest with BSE. Any violation of the above would constitute an offence under the laws of India and international treaties governing the same. The names of other companies and third party products may be trademarks or service marks of their respective owners.