

White Rabbit Switch Software

Routing Table Unit Technical Specification

Version: 0.1

Juan Luis Manas (Integrasys)

Miguel Baizán (Integrasys)

January 2011

 White Rabbit – January 2011

1

White Rabbit Routing Table Unit (RTU@SW)

INTRODUCTION

This document first describes the reference functional and non-functional

requirements for the WR routing table unit (RTU@SW module), based on the WR

specifications and the 802.1D standard. These requirements consider exclusively

implementation of the Basic Filtering Services. Then, the high-level reference

architecture with the main modules involved in routing table management –both in

HW and SW- is outlined. Finally, last section introduces the testing environment and

test cases, and presents functional test results.

REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENTS

ID Description

FR1 RTU shall support Basic Filtering Services (802.1D 6.6.5)

FR2 RTU@SW shall support explicit configuration of static filtering

information (802.1D 7.1.2)

FR3 RTU@SW shall support automatic learning of dynamic filtering

information for unicast destination addresses
1
. (802.1D 7.1.2)

FR4 RTU@SW shall support aging out dynamic filtering information that

has been learned. (802.1D 7.1.2)

FR5 RTU shall manage the forwarding and learning performed by each

Port dynamically. (802.1D 7.4)

FR6 The learning process shall create or update dynamic filtering entries

if and only if:

- the receiving port is in appropriate state

- the source address is unicast

- there are no superior static filtering rules for the MAC

- the filtering database is not full

(See 802.1D 7.8)

FR7 When the filtering database is full, an existing entry MAY be

removed to make space.

FR8 Static filtering information shall not be removed by any aging

mechanism. (802.1D 7.9)

1
 Through observation of source addresses of network traffic

 White Rabbit – January 2011

2

FR9 Static and dynamic filtering entries shall comprise: (802.1D 7.9)

- A MAC address

- A Port Map

FR10 The filtering database shall support the creation, updating and

removal of dynamic filtering entries. (802.1D 7.9)

FR11 Static filtering entries shall support at least unicast and group MAC

addresses and FORWARD/DROP control elements.

FR12 The filtering database shall contain, at most, one dynamic filtering

entry for a given MAC address (802.1D 7.9.2)

FR13 The Aging Time MAY be set by management.

FR14 Aging shall be managed on RTU@SW (wrsw_rtu_wb.vhd)

FR15 A MAC Address can be in a static filtering entry, a dynamic filtering

entry, both or neither (802.1D 7.9.5)

FR16 Static Filtering Entries shall be stored permanently.

FR17 The filtering database shall be initialised with static filtering entries.

FR18 Entries shall be added and removed from under explicit

management control.

FR19 Reserved addresses shall be configured in the database (See 802.1D

table 7.10 and section 7.12.4)

FR20 Management shall not provide capabilities to modify or remove

reserved addresses from databases.(802.1D 7.12.6)

FR21 RTU@SW shall monitor the RTU Port Status information as required

by the learning process. (802.1D 7.3)

NON-FUNCTIONAL REQUIREMENTS
ID Description

NFR1 RTU@SW shall be prepared for future support of Extended Filtering

Services

NFR2 RTU@SW shall be prepared for future support of Remote

Management

GENERAL ARCHITECTURE

RTU OPERATION

RTU takes packet source & destination MAC addresses, VLAN ID and priority and

decides where and with what final priority (after evaluating the per MAC-assigned

priorities, per-VLAN priorities, per-port and per-packet) the packet shall be routed.

The WR RTU consists of a number of hardware and software modules which cooperate

to fulfil the abovementioned requirements. RTU@HW handles the switching process

while RTU@SW handles de learning and aging processes, managing the filtering

 White Rabbit – January 2011

3

database and VLAN table. RTU interruptions are captured at kernel space using the WR

Vectored Interrupt Controller (VIC).

At a high level, the normal RTU operation involves the following steps:

0. RTU is initialised

1. RTU@HW receives PDU from SRC MAC to DST MAC

2. If SRC MAC is not in the MAC table, RTU@HW places an UNRECOGNISED

REQUEST in the learning queue (UFIFO) and triggers an RTU interruption.

3. If DST MAC is not in the MAC table, RTU@HW broadcasts the received PDU on

every port (except the one on which it was received), places an UNRECOGNISED

REQUEST in the UFIFO and triggers an RTU interruption.

4. The RTU@SW learning process captures RTU interruption and reads the

UNRECOGNISED REQUEST from the learning queue.

5. RTU@SW creates (or updates, if required) a filtering entry in the filtering

database
2
.

6. The RTU@SW aging process keeps track of the age of each entry.

7. When an entry is too old, the RTU@SW aging process removes the entry from

the filtering database.

2
 Filtering information is commited to RTU@HW ZBT SRAM via MFIFO. RTU@SW also keeps a filtering

database cache.

 White Rabbit – January 2011

4

BLOCK DIAGRAM

This section briefly describes the main RTU blocks for both the RTU@HW and

RTU@SW.

RTU@HW

RTU@HW perfoms the core WR packet switching functions based on information

provided by the RTU@SW. RTU@SW gains RW access to the RTU@HW components

either through direct mapped memory (HCAM, VLAN table, AGING RAM, CSRs), or

FIFOs (MFIFO, UFIFO) enabled by the Wishbone bus bridge. Detailed information on

the RTU@HW specification is available at the OHWR repository
3
.

• HTAB: Main hash table storing routing information. Two memory banks. (ZBT

SRAM)

• HCAM: Hash collisions memory. Two memory banks (BRAM)

• RR ARBITRER: Round Robin Arbitrer

• AGING RAM: Provides a map of entries accessed by RTU.

• VLAN TABLE: Provides VLAN related info.

• MFIFO: Main hashtable CPU access FIFO

• UFIFO: Unrecognized request FIFO

• CSR: Control/Status Register used for FIFO monitoring and control

3
 See wrsw_rtu_spec.txt for a detailed description of RTU interfaces and data structures.

 White Rabbit – January 2011

5

• PORT CSR: Control/Status Register for Port configuration

RTU@SW

The RTU@SW comprises the following modules:

• RTU DAEMON, which handles the learning and aging processes and manages

the filtering and permanent databases. The RTU deamon processes concurrent

operation is based on standardised IEEE POSIX 1003.1c pthread libraries.

• The LEARNING PROCESS, continuously awaits for incoming unrecognised

requests. Once an RTU interruption request signallig such event is received at

the software level, the learning process is responsible for gathering and

examining the received request, and create or update a dynamic filtering entry

in the filtering database.

• The AGING PROCESS, runs periodically in order to remove old entries from the

filtering database. The parameters that control the aging behaviour are the

aging resolution and aging time, which determine the minimum resolution of

the entry last access time and the maximum time that a non-accesssed entry

can be stored in the filtering database.

 White Rabbit – January 2011

6

• The WRIPC HANDLER, provides remote access to the filtering database.

Currently used for inspection of stored static and dynamic filtering entries.

• The FILTERING DATABASE, offers the API for the creation and removal of static

and dynamic filtering entries, hiding hardware related implementation details

to the other RTU modules. It maintains a cache of the HTAB/HCAM and VLAN

tables - which are implemented at the RTU@HW. The filtering database

supports concurrent access to filtering entries.

• The RTU DRIVER (user space) provides the low level read/write access methods

required to communicate with the RTU@HW modules (UFIFO, MFIFO, HCAM,

AGING RAM for main hashtable, AGING register for HCAM, RTU Global Control

Register and Port Control Register). RTU interruption requests are made

available to user space by means of blocking IOCTL calls to the misc device

representing the RTU DRIVER at kernel space.

• The RTU DRIVER (kernel space) handles RTU interruption requests. Applies the

gnurabbit (at http://www.ohwr.org) misc device concepts to make RTU UFIFO

interrupts available to user space.

The RTU@SW operation involves the following steps:

RTU SET-UP

1. The bootstrap process installs RTU driver (kernel space) module
4
.

2. RTU driver at kernel space registers interruption handler at VIC@SW for RTU

related interruption.

3. RTU daemon initialises RTU@HW

4. RTU daemon sets up filtering database and starts up the learning, aging and

wripc processes. It populates the filtering database with static filtering entries.

NOTIFY UNRECOGNISED REQUEST

1. VIC@SW detects RTU interruption.

2. VIC@SW invokes RTU interruption handler (RTU driver at kernel space).

3. RTU interruption handler awakes (if necessary) any process awaiting to read an

unrecognised request from UFIFO.

4. RTU driver (user space) gets next unrecognised request from UFIFO.

4
 RTU driver is independent from RTU daemon and is therefore registered apart.

 White Rabbit – January 2011

7

UPDATE ROUTING TABLE

1. The RTU daemon learning process gets unrecognised request (ureq) from

UFIFO
5

2. If MAC address is NOT in the filtering database and the filtering database is not

full, the learning process creates or updates the corresponding filtering entry in

the filtering database.

3. The filtering database stores a copy of the filtering entry in the local cache and

invokes RTU driver (user space) to write the filtering entry into the HTAB (via

MFIFO) or HCAM, as required.

AGING OUT FILTERING ENTRIES

1. Periodically
6
, the aging process flushes old entries from the filtering database.

2. The filtering database takes a snapshot of accessed entries during the last aging

resolution period and updates the last access timestamp for each accessed

entry.

3. Each aging resolution period, the last access timestamp is checked for all

dynamic entries stored at the filtering database. If entry was not access for the

aging time period, the entry is removed from the database. Therefore, an entry

can remain in the filtering database at most for a period of AGING_TIME +

AGING_RESOLUTION.

SYSTEM TESTS

TEST PROCEDURE

In order to test RTU@SW operation, an Ethernet frame generator
7
 was used to

produce ETH frames with pre-assigned source and destination MAC addresses. Specific

MAC addresses were obtained to fulfil test case requirements in terms of the desired

number of MAC hash collisions.

Each test case is manually run and behaviour of RTU is observed. If, once that an

Ethernet frame arrives to the WR switch, the RTU correctly updates the aging map for

the corresponding filtering database entry, the test case is considered a success.

5
 The RTU daemon remains blocked, awaiting unrecognised requests in UFIFO

6
 Each aging resolution time

7
 (based on the use of rawsockets)

 White Rabbit – January 2011

8

TESTBED CONFIGURATION

The Ethernet frame generator was run on a Linux Ubuntu 10.04.1 PC with processor

AMD Turion X2 Dual Core. Generated Ethernet frames were sent from a Broadcom

Netlink Gigabit Ethernet card to a WR switch node v2.0, using a Trendnet TFC-1000

MGB optical converter to connect to one of the available SFP uplink ports (wru1).

TEST RESULTS

Test Case #1

Name Create HTAB entries

Goal of the test case

Check that entries are correctly stored at HTAB buckets,

according to the number of hash collisions previously

observed.

Scenario description An ethernet frame generator was used to send a predefined

number of ethernet frames with MAC addresses that

produced a given number of hash collisions. The ethernet

frames were periodically re-sent to the WR switch. The test

 White Rabbit – January 2011

9

case was repeated for different numbers of hash collisions

between (0 to 3)

Test results

Entries were stored in HTAB buckets numbered 0 to 3 for the

hash collisioning source MAC addresses. Position was

correctly determined based on the number of collisions.

RTU@HW correctly accessed to HTAB entries.

Test Case #2

Name Create HCAM entry

Goal of the test case

Check that, once that HTAB is full for a given hash, a new

collisioning entry is correctly stored at HCAM. Check that last

entry at HTAB is updated to point to following entry at

HCAM.

Scenario description Same scenario as the Test Case #1. Ethernet frame generator

was run to produce frames with 4 hash collisions, thus forcing

the RTU to store one entry at HCAM.

Test results

First four collisioning entries were stored in HTAB buckets

numbered 0 to 3 for the hash collisioning source MAC

addresses. The fifth collisioning frame was stored at bucket 0

of HCAM. Last entry at HTAB was updated: go_to_cam and

cam_addr fields were updated to point to HCAM addr 0.

RTU@HW correctly accessed both HTAB and HCAM entries.

Test Case #3

Name Create multiple HCAM entries

Goal of the test case
Check that multiple collisioning entries are correctly stored at

HCAM.

Scenario description Same scenario as the Test Case #1. Ethernet frame generator

was run to produce frames with up to 36 hash collisions, thus

forcing the RTU to store up to 32 entries at HCAM.

Test results

The process of updating the HCAM list to append new entries

to an existing entry list was observed. The process involved

updating the last HCAM entry, which was no longer the last

one storing the new entry at the end of the existing list

HCAM. RTU@HW correctly accessed both HTAB and HCAM

entries.

Test Case #4

Name Create multiple HCAM entries for multiple collisioning hash

 White Rabbit – January 2011

10

lists

Goal of the test case

Check correctness of the algorithm that calculates the

position of an appropriate empty bucket in HCAM for a new

collisioning list.

Scenario description Multiple ethernet frames generator processes were run in

order to force the use of HCAM for storing multiple

collisioning hash lists.

Test results

Operation of the find_empty_bucket() algorithm was

verified. The method correctly returned the bucket which

was at the middle of the longest free HCAM fragment, thus

permiting any existing previous list to continue increasing.

Test Case #5

Name Fill filtering database

Goal of the test case Check RTU behaviour when the filtering database gets full.

Scenario description Ethernet frame generator was run to produce frames with

more than 36 hash collisions. This fills up the HCAM and

therefore no new hash collisioning entry can be stored in the

database.

Test results

Once that the first 36 were stored at HTAB (4) and HCAM

(32), new incoming unrecognised requests were ignored. The

RTU just output an error message “filtering database full”

and continued running.

Test Case #6

Name Delete HTAB entries (no HCAM contents)

Goal of the test case
Check that HTAB entries are correctly shifted to fill the

position left by the removed entry.

Scenario description The ethernet frame generator was programmed to initially

send a list of collisioning hash frames (1 to 3). After a given

period of time, all the frames were re-sent to the WR switch,

except for the frame that would correspond to the HTAB

bucket to delete. As a consequence, the aging process

deleted such entry.

Test results

In all cases the aging process correctly removed the entry

corresponding to the eth frame that was not resent. MFIFO

write operations corresponding to shifting the HTAB buckets

following the removed entry were observed. RTU@HW

correctly accessed all the remaining HTAB entries.

 White Rabbit – January 2011

11

Test Case #7

Name Delete HTAB entries (HCAM contents)

Goal of the test case
Check that HTAB entries are correctly shifted to fill the

position left by the removed entry.

Scenario description The ethernet frame generator was programmed to initially

send a list of collisioning hash frames (1 to 3). After a given

period of time, all the frames were re-sent to the WR switch,

except for the frame that would correspond to the HTAB

bucket to delete. As a consequence, the aging process

deleted such entry.

Test results

In all cases the aging process correctly removed the entry

corresponding to the eth frame that was not resent. MFIFO

write operations corresponding to shifting the HTAB buckets

following the removed entry were observed. RTU@HW

correctly accessed all the remaining HTAB entries.

Test Case #8

Name Delete HTAB entries (HCAM contents)

Goal of the test case

Check that HTAB entries are correctly shifted to fill the

position left by the removed entry. Check that first HCAM

entry is moved to HTAB and HTAB pointer to HCAM is

appropriatey updated.

Scenario description The ethernet frame generator was programmed to initially

send a list of 5 or 6 collisioning hash frames. After a given

period of time, all the frames were re-sent to the WR switch,

except for the frame that would correspond to the HTAB

bucket to delete. As a consequence, the aging process

deleted such entry.

Test results

MFIFO write operations corresponding to shifting the HTAB

buckets following the removed entry were observed.

The HCAM write operation corresponding to cleaning the

first HCAM entry was observed.

RTU@HW correctly accessed all the remaining HTAB and

HCAM entries.

Test Case #9

Name Delete first HCAM entry.

Goal of the test case Check that the last HTAB entry is updated to point to the

 White Rabbit – January 2011

12

following entry at HCAM. Check that the HCAM entry is

correctly removed.

Scenario description The ethernet frame generator was programmed to initially

send a list of 5 or 6 collisioning hash frames. After a given

period of time, all the frames were re-sent to the WR switch,

except for the frame that corresponding to the first HCAM

bucket.

Test results

MFIFO write operation corresponding to updating the last

HTAB bucket was verified. The first entry at the HCAM list

was correctly cleaned. RTU@HW correctly accessed all the

remaining HTAB and HCAM entries.

Test Case #10

Name Delete intermediate HCAM entry.

Goal of the test case
Check that HCAM entries are correctly shifted to fill the

bucket corresponding to the removed entry.

Scenario description Same scenario as in Test Case #9, considering a number of

collisions up to 36. Several intermediate positions to remove

were checked (6 to 35).

Test results

HCAM write operations for all the entries following the one

to remove were observed. As a result, all the HCAM list was

correctly shifted. RTU@HW correctly accessed all the

remaining HTAB and HCAM entries.

Test Case #11

Name Delete last HCAM entry.

Goal of the test case
Check that the HCAM entry previous to the last one is

marked as the end of the list.

Scenario description Same scenario as in Test Case #9. In this case, the position to

remove was always corresponding to the last collisioning

frame sent by the ethernet frame generator.

Test results

The low level HCAM write operation updating the

end_of_bucket bit of the entry previous to the last one was

verified. The last HCAM entry was correctly cleaned.

