Contents

1 Introduction 6
 1.1 About this Guide .. 6
 1.2 The Official Manuals .. 6

2 Product Overview 7
 2.1 Package ... 7
 2.2 Front panel v3.4 (Legend) ... 7
 2.3 Front panel v3.3 (Legend) ... 7
 2.4 Back panel (Legend) .. 8

3 Basics 9
 3.1 Default Setting .. 9
 3.2 Quick Startup ... 9
 3.3 Obtain the WRS IP .. 10
 3.4 Login using the Web Management Interface (WMI) 10
 3.5 Login via SSH .. 10
 3.6 USB Connections .. 11
 3.7 Login via USB .. 12
 3.8 Login using Windows .. 12

4 Configurations 14
 4.1 Web Management Interface Features: 14
 4.2 GrandMaster mode .. 15
 4.3 Non-DHCP user ... 16
 4.4 Console tools: .. 17
 4.5 Firmware updates ... 17
 4.6 Booting ... 18
 4.7 Advanced configuration ... 18

5 Safety Notes 20
6 Appendix

6.1 Specification .. 21
6.2 Features ... 22
6.3 Warranty ... 22
6.4 FAQs & Troubleshooting ... 22
6.5 Contact-Us ... 23
6.6 Save Our Environment ... 23

7 References .. 24
Copyright

This document is copyrighted (under the Berne Convention) by Seven Solutions company and is formally licensed to the public under GPL v2.0 license. Report content can be copied, modified, and redistributed.

The Seven Solutions Logo can not be modified in any form, or by any means without prior written permission by Seven Solutions.

Licenses

The "Startup Guide" (as defined below) is provided under the terms of GPL v2.0
Copyright (C) 2014 - Seven Solutions

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

The WRS has been released under the CERN OHL licence.

Copyright CERN 2011.
This documentation describes Open Hardware and is licensed under the CERN OHL v. 1.2.

You may redistribute and modify this documentation under the terms of the CERN OHL v.1.2. (http://ohwr.org/cernohl). This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN OHL v.1.2 for applicable conditions
Revision table

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Author</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>18/02/2013</td>
<td>Benoit Rat</td>
<td>Initial Version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td>Reviewer: Rodrigo Agis (7S)</td>
</tr>
<tr>
<td>0.2</td>
<td>26/03/2013</td>
<td>Benoit Rat</td>
<td>Adding suggestion from Beck, Dietrich Dr (GSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>27/03/2013</td>
<td>Benoit Rat</td>
<td>Modifying licence to GPL v2.0 to be compatible with the package</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>23/05/2013</td>
<td>Benoit Rat</td>
<td>Updating 125MHz out to CLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>26/07/2013</td>
<td>Benoit Rat</td>
<td>Adding suggestion from Erik Van Der Bij (CERN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>26/07/2013</td>
<td>Benoit Rat</td>
<td>Updating for v3.3 release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>26/07/2014</td>
<td>Jose Luis Gutierrez</td>
<td>Adding WMI for v4.0 release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>02/10/2014</td>
<td>Benoit Rat</td>
<td>Updating for v4.1 release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>05/08/2014</td>
<td>Benoit Rat</td>
<td>Updating for v4.2 release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
</tbody>
</table>
Glossary

DHCP The Dynamic Host Configuration Protocol to obtain network configuration.

FMC FPGA Mezzanine Card, an ANSI standard for mezzanine card form factor.

HDL Hardware description language.

LM32 LatticeMico32 is a 32-bit microprocessor soft core optimized for field-programmable gate arrays (FPGAs).

NAND NAND Flash Memory, a type of reprogrammable non-volatile computer memory.

PCIe Peripheral Component Interconnect Express, a high-speed serial computer expansion bus standard.

PTP Precise Time Protocol, a time synchronization protocol.

SMC SubMiniature version C, coaxial connector used in radio-frequency circuits.

SFP Small form-factor pluggable transceiver, a hot-pluggable transceiver for optical fiber.

SPEC Simple PCIe FMC carrier.

SVEC Simple VME FMC carrier.

UART Universal Asynchronous Receiver/Transmitter.

WR White Rabbit.

WRS White Rabbit Switch.

WMI Web Management Interface
1 Introduction

The White Rabbit Switch (WRS) is the key component of the White Rabbit Protocol that provides precision timing and high synchronization over an Ethernet-based network.

1.1 About this Guide

This document is intended as a Startup Guide for quickly setup your switch in a White Rabbit Network. For more details on advanced topics please refers to the Advanced configuration section or to the other manuals.

This document will refer only to WRS with hardware v3.3 and v3.4.

1.2 The Official Manuals

This is the current set of manuals that accompany the WRS:

WRS Startup Guide: hardware installation instructions.

This manual is provided by the manufacturer. It describes handling measures, the external connectors, hardware features and the initial bring-up of the device.

WRS User’s Manual: documentation about configuring the WRS, at software level.

This guide is maintained by software developers. The manual describes configuration in a deployed network, either as a standalone device or as network-booted equipment. The guide also describes how to upgrade the switch, because we’ll release new official firmware images over time, as new features are implemented.

WRS Developer’s Manual: it describes the build procedure and how internals work.

The manual is by developers and for developers. This is the document to check if you need to customize your WRS rebuild software from new repository commits that are not an official release point, or just install your WRS with custom configuration values.
2 Product Overview

2.1 Package

The WRS package is composed of various elements:

- The packaging box
- A power cable according to the country of distribution.
- The 18 SFP ports switch.
- SFP LC connectors
 - 16x AXGE-3454-0531 (violet)
 - 2x AXGE-1254-0531 (blue)

Note: The SFP LC connectors are optional. Consult the SFPs Wiki for more information about the compatibility of SFPs and how to use them.

2.2 Front panel v3.4 (Legend)

![Front Panel of the WRS v3.4](image)

1. The 18 SFP ports
2. Synced/Activity LEDs
3. Link/WR Mode LEDs
4. Management Mini-USB (B) port
5. Status LED
6. Power LED
7. PPS output
8. CLK1 output (62.5 MHz PLL)
9. CLK2 output (Auxiliary clock, default is 10MHz)
10. 10MHz reference clock input (GPS/Cesium)
11. PPS reference input
12. Ethernet 100Mbps Management Port

2.3 Front panel v3.3 (Legend)

1. The 18 SFP ports
2. Synced/Activity LEDs
3. Link/WR Mode LEDs
4. Management Mini-USB (B) port
5. Status LED
6. Power LED
7. PPS output
8. Synced CLK reference Output (62.5 MHz)
9. PPS input (GPS Clock)
10. 10MHz reference clock input (GPS/Cesium)
11. 125MHz reference clock input (Not used)
12. Ethernet 100Mbps Management Port

2.4 Back panel (Legend)

13. Ground Connector
14. Generic Button
15. Flashing Button (See firmware update)
16. RS232 Management Port (GPRMC)
17. FPGA Mini-USB (B) UART
18. ARM Mini-USB (B) UART
19. Power Switch
20. Power Plug
21. Serial Number and MACs
3 Basics

3.1 Default Setting

The device is factory configured with the following default settings:

- IP configuration is **DHCP**
- MACs are given by the manufacturer; labeled on back panel #21
 - MAC1 corresponds to the management port (RJ45).
 - MAC2 corresponds to the first SFP port ($wr[0 - 17] \leftrightarrow MAC2 + [0 - 17]$).
- WR mode is **BoundaryClock** (Simple Master)
 - The first port (SFP 1) is configured as WR slave.
 - The other ports (SFPs [2-18]) are configured as WR master.
- SSH user: **root**
- SSH password: (empty/just press enter)
- Boot method: from Nandflash firmware
- Web Management Interface user: **root**
- Web Management Interface password: (empty)

3.2 Quick Startup

To quickly get the switch working we recommend you to:

1. Plug the **Ethernet 100Mbps Management Port** of the switch to a DHCP network using RJ45 patch-cord.
2. Plug the power cable to the **Power Plug**.

After these connections have been made, toggle the power-switch on to turn the device on. After the power on, the **WRS** should behave as follows:

3. The **Power LED** goes green
4. After 15s, the **Status LED** goes orange which means that the **WRS**’s kernel has started.
5. Then the fan start working which means that FPGA has been correctly programmed.
6. Finally, it goes green when everything is successful (PLL is locked).

You have now the **WRS** ready to be used in a WR network.

7. Connect the blue SFP (AXGE-1254-0531) to the SFP port 1 of the **WRS**. This port is the one that will receive synchronization from another **WRS** master or from the **WRS** grandmaster. If you only have one switch in your network you might configure it in **GrandMaster mode**.
8. You can plug the other SFP ports [2-18] with violet SFPs (AXGE-3454-0531) to the WR node such as **SPEC, SVEC, ...**

www.sevensols.com/whiterabbitsolution
3.3 Obtain the WRS IP

In order to login to the WRS using SSH or through the web interface you need to obtain the IP of the ethernet management port. By default, this port automatically gets an IP using the DHCP protocol. If you don’t have any DHCP router/server in your network, please refer to the non-DHCP section.

Then to retrieve the management IP of the WRS you can:

- Connect to ttyACM0 to retrieve the IP (ipconfig eth0).
- Open the interface of your DHCP server, and find the IP associated to your WRS MAC address.
- Scan your local network using nmap (i.e, `sudo nmap -sP 192.168.1.0/24`) and read the output `arp -n` to associate the corresponding IP of the WRS to its MAC address.

3.4 Login using the Web Management Interface (WMI)

The easiest way to access and manage the WRS is through its web interface by using the ethernet management port.

The access should be carried out by a network browser (Mozilla Firefox and Google Chrome supported) as it follows:

1. First you need to obtain the IP of WRS as explained previously.
2. Open your browser and type the IP address (i.e. 192.168.1.50) of the WRS.

1. After accessing the WMI, you should enter the login using root’s password, otherwise you will be only able to see the Dashboard info. By default there is no password, so you should leave this field empty. For this reason it is strongly recommended to change the password.

Changing root password.

In order to change the WMI password you just need to login, then click on “User: root” on the left side of the webpage.

In the USER ADMINISTRATION panel, you have to enter your old password, the new password and its confirmation. Once you submit the new password you will be redirected to the main screen and logged out.

Notes: By changing the password through the WMI you will also change the root user password to connect through SSH.

3.5 Login via SSH

If the WRS IP is for example 192.168.1.50 you might connect using:

```bash
ssh root@192.168.1.50
```

By default there is no password, therefore you should just press enter when a password is requested.
3.6 USB Connections

The WRS has three different USB ports used to communicate/monitorize through a PC.

- a. Management Mini-USB (B) port
- b. FPGA Mini-USB (B) UART
- c. ARM Mini-USB (B) UART

Under a Linux system, these ports correspond themselves to different devices on your computer.

- a. ttyACM0 (when the Status LED is green)
- b. ttyUSB0
- c. ttyUSB1

To connect to them you need to open a serial console such as minicom\(^1\)

```bash
# Connecting to the Management USB port
minicom -D /dev/ttyACM0 -b 115200

# Connecting to the FPGA UART
minicom -D /dev/ttyUSB0 -b 115200

# Connecting to the ARM UART
minicom -D /dev/ttyUSB1 -b 115200
```

\(^1\)In Debian-like distribution you can install minicom by executing `sudo apt-get install minicom`.

Figure 4: Web Management Interface - Login/Dashboard
Note: ttyUSB0 and ttyUSB1 usually correspond respectively to FGPA and ARM UART. However this order can change dependably on how you plug the cable.

3.7 Login via USB

Once the device has been correctly started up (Status LED is green), it is recommended to use the USB management port to connect to the device instead of the ARM UART.

Connecting to the Management USB port

```
minicom -D /dev/ttyACM0 -b 115200
```

The ARM UART is usually employed for development or monitoring because the log messages are usually printed to this console.

3.8 Login using Windows

The process of login to the switch using Windows (XP, Vista, 7, 8) is pretty similar:

1. You first need to download the Putty Tool and install it.

2. Then you need to list and find out which serial port in Windows corresponds to which interface. A simple way to perform this is to plug only one USB cable at a time, and go to Device Manager > Ports (COM & LPT) to check the name of the COM<X> port.

3. Finally to connect through the USB you just need to open the Putty tool and configure it as indicated in the figure below. Do not forget to replace the COM9 port name by the one that corresponds to the USB management.

4. Similarly, you can connect to the WRS using the SSH protocol. You should not forget to replace the IP of your WRS (yellow) by the one in your subnetwork.
Figure 5: Putty - USB connection

Figure 6: Putty - SSH connection
4 Configurations

We strongly suggest you to configure the switch using the Web Management Interface.

4.1 Web Management Interface Features:

WMI is a web interface that allows the WRS management from a web browser. It displays the configuration and status of the main services and programs that are available for the switch.

It acts as an abstraction layer between the dot-config file and the programs in /wr/bin/ folder, making the WR switch management easier for the user. It also gives the possibility to restore/backup a specific configuration by saving/loading the dot-config file.

![Image of WMI interface]

Figure 7: Web Management Interface - Switch Management

List of all the actions that can be performed by using the WMI:

- **Dashboard**: Display info about the WRS such as HW information, services status and main configuration.
- **Network Setup**: Configuration of the ethernet management port (DHCP, Static, etc.)
- **WR-PPSi Setup**: Configuration about the timing network: WR mode, NTP server, PPSi clock class, etc.
- **Endpoint Mode**: Modify the mode for each port (wr_master/wr_slave/auto/none).
- **VLAN setup**: Let the user configure specific VLANs for different ports.
- **Switch Management**: Let the user load/backup a specific configuration, reboot switch, disable system monitor.
- **Advanced Tab**:

www.sevensols.com/whiterabbitsolution
4 Configurations

- Calibrate the SFP
- Configure the endpoint
- Calibrate the endpoint
- Load lm32 and FPGA binaries into the switch.
- Configure the files for the login system.
- Open a virtual console that emulate a terminal connection.
- **Flash a new firmware**

Notes: If you want to know more about each section you can click the help icon that you will find on the top-right corner of each page.

4.2 GrandMaster mode

In a White Rabbit network, almost all the switches are configured as boundary clock (a.k.a Simple Master) which is the default configuration. They receive a clock from an upper layer, and transmit it to other switches or nodes (lower layer). However the “top” switch connected to the GPS signal is called the **GrandMaster** and is configured in a specific way.

First you need to connect the 10MHz and PPS from a clock source to the switch SMC inputs. Please consult the *wr_external_reference.pdf* document to understand what kind and shape of signals is needed as input for grand master mode.

Then to configure a **WRS** as GrandMaster you must:

Using the web-interface

You can find the option to select the switch in grandmaster mode in the configuration panel under the **WR-PPSi** tab. Once you have change the option, you should click on **Save new configuration**, and wait until the WRS has reboot.

Notes: A **NTP server should be provided for the grandmaster switch so that we can distribute the current TAI seconds to the whole WR network**
By editing the dot-config file in a terminal

If you prefer to configure the WRS using a terminal you should open the dot-config file

```
nano /wr/etc/dot-config
```

and replace the following lines:

```
# CONFIG_TIME_GM is not set
# CONFIG_TIME_FM is not set
CONFIG_TIME_BC=y
```

by

```
CONFIG_TIME_GM=y
# CONFIG_TIME_FM is not set
# CONFIG_TIME_BC is not set
```

and finally you need to reboot the switch.

4.3 Non-DHCP user

If you have no DHCP server in your network you must connect to the WRS using the login via USB method and edit the dot-config file:

```
nano /wr/etc/dot-config
```

for example, in a 192.168.1.x subnetwork you might replace the `CONFIG_ETH0_DHCP=y` by
4 Configurations

Local Network Configuration#
#
CONFIG_ETH0_DHCP is not set
CONFIG_ETH0_DHCP_ONCE is not set
CONFIG_ETH0_STATIC=y

#
Management port (eth0) Address#
#
CONFIG_ETH0_IP="192.168.1.254"
CONFIG_ETH0_MASK="255.255.255.0"
CONFIG_ETH0_NETWORK="192.168.1.0"
CONFIG_ETH0_BROADCAST="192.168.1.255"
CONFIG_ETH0_GATEWAY="192.168.1.1"

Note: If you are willing to use TFTP script in a non-DHCP network, you must also statically set the IP in the bootloader configuration.

4.4 Console tools:

If you are logged via a terminal you can use various tools to monitor/configure the WRS. All these tools are found in /wr/bin/ which is included in the $PATH.

The following list resumes the most interesting commands:

- **wrs_version** -t: Print information about the SW & HW version of the WRS.
- **rtu_stat**: Routing Table Unit Statistic, returns the routing table information where we can find which MAC needs to be forwarded to which port. It also allows to add and delete entries.
- **wr_mon**: WR Switch Sync Monitor, outputs information about the state of WR synchronisation such as Phase Tracking, Master-Slave delay, link asymmetry, etc...
- **wrs_vlans**: Creation and configuration of VLANs.

Note: More information about the tools are explained in the wrs-user-manual.pdf or can be obtain using the embedded help argument: --help, -h or help.

Note: The SFP ports are labeled from 1 to 18 on the front panel, their corresponding network interface are named from wr1 to wr18.

4.5 Firmware updates

Since the firmware v4.1 we have improved the update procedure and the switch is able to upgrade by itself.

Just copy the firmware you have downloaded to the /update/wrs-firmware.tar in the WRS switch. For instance you can do:

```
scp wr-switch-sw-v<X.X-YYYYMMDD>_binaries.tar root@192.168.1.50:/update/wrs-firmware.tar
```

and then reboot the switch.

You can also use the Advanced Mode > Firmware menu in the Web Interface to perform this step.

Note: If you are upgrading from v3.3 or v4.0 please refer to wrs-user-manual.pdf.
4.6 Booting

After 10 seconds, the bootloader automatically loads the WRS firmware from the Flash NAND memory of the switch. If you connect to the ARM debug port you might see the following message:

Welcome on WRSv3 Boot Sequence
1: boot from nand (default)
2: boot from TFTP script
3: edit config
4: exit to shell
5: reboot

Note: If you want to change how the WRS is booted you can place a wrboot script in your TFTP root folder and select the second option or you can edit the configuration (third option). Please find more explanations in the wrs-user-manual.pdf

4.7 Advanced configuration

Please refer to the White Rabbit Switch: software build scripts manual (wrs-user-manual.pdf) that explains advanced topics such as:

- Advanced flashing options.
- Configuring specific MAC address.
- Modification of the bootloader.
- Changing Slave/Master port type.
- Building from the sources.
• etc.
5 Safety Notes

Warning: Do not block the air vents which are located on back panel of the WRS, the internal temperature might increase and damage the switch.

Warning: To increase the lifetime of the WRS it is recommended to use the switch in a controlled ambient environment and limit to the ambient condition stated in the Specification Appendix.

Warning: The standard power source for this equipment is designed to work in the range of 110-240V with 50-60Hz.

Warning: This equipment is intended to be grounded using the *Grounded Connector*. Ensure that the host is connected to earth ground during normal use.
6 Appendix

6.1 Specification

FPGA

<table>
<thead>
<tr>
<th>Type</th>
<th>Xilinx Virtex-6 (LX240T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>1156-pin BGA</td>
</tr>
<tr>
<td>Slices</td>
<td>37,680 (4 LUTs and 8 flip-flops)</td>
</tr>
<tr>
<td>Memories</td>
<td>416x36Kb (9,504Kb) Block RAM</td>
</tr>
<tr>
<td></td>
<td>32MB NOR Flash</td>
</tr>
<tr>
<td>Softcore</td>
<td>LatticeMico32 (LM32)</td>
</tr>
<tr>
<td>I/O</td>
<td>20 GTX transceivers for SFP links</td>
</tr>
<tr>
<td></td>
<td>40 GPIO for generic purpose (LEDs, SFP detection, ...)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Monitoring power supply</td>
</tr>
<tr>
<td>Temperature</td>
<td>Sensor control</td>
</tr>
</tbody>
</table>

CPU

<table>
<thead>
<tr>
<th>Type</th>
<th>ARM Atmel AT91 SAM9G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>400MHz (ARM926E)</td>
</tr>
<tr>
<td>Memories</td>
<td>64MB DDR2 (16-bit bus chip)</td>
</tr>
<tr>
<td></td>
<td>256MB NAND flash chip</td>
</tr>
<tr>
<td></td>
<td>8MB boot flash</td>
</tr>
<tr>
<td>I/O</td>
<td>32bit Async Bridge with FPGA</td>
</tr>
<tr>
<td></td>
<td>100Base-T Ethernet</td>
</tr>
<tr>
<td>OS</td>
<td>Linux (Kernel v3.16.38)</td>
</tr>
</tbody>
</table>

OnChip Clock

<table>
<thead>
<tr>
<th>PLL</th>
<th>AD9516 (14-Output Clock Generator with Integrated 1.6 GHz VCO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesizer</td>
<td>TI CDCM61002RHBT (28-683MHz)</td>
</tr>
<tr>
<td>DAC</td>
<td>2xAD5662BRJ (16bit; 2.7-5.54V)</td>
</tr>
</tbody>
</table>

Others

<table>
<thead>
<tr>
<th>Soldering</th>
<th>IPC-610 Rev E Class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification</td>
<td>ISO-9001, ISO-14001, CE, RoHS</td>
</tr>
<tr>
<td>Power Supply</td>
<td>100-240VAC, 2.0A 50-60 Hz</td>
</tr>
<tr>
<td></td>
<td>12V DC, 6.66A – 80W max</td>
</tr>
</tbody>
</table>
6.2 Features

- PTPv2 (IEEE 1588-2008) with PPSi
- WRP daemon (node discovery, etc.)
- VLANs
- DHCP client
- SSH server
- Web Management Interface
- SNMP
- Rsyslog
- Python Support
- NTP Client/Relay/Server
- ARP/ DNS / EtherWake protocol

6.3 Warranty

The **WRS** is fully factory tested and warranted against manufacturing defects for a period of one year. As the circumstances under which this **WRS** is installed can not be controlled, failure of the **WRS** due to installation problems can not be warranted. This includes misuse, miswiring, overheating, operation under loads beyond the design range of the **WRS**. For warranty or non-warranty replacement send the **WRS** to:

Seven Solutions

C/ Baza, parcela 19, nave 3

Polígono Industrial Juncaril, 18210 Peligros (Granada), SPAIN.

6.4 FAQs & Troubleshooting

If you are experiencing some issues please look first at the **WRS FAQ** wiki page if you can find an answer.

You can also reach out the wiki to see if your issue is a known bug and if a solution was found: http://www.ohwr.org/projects/wr-switch-sw/wiki/Bugs

You can also request Technical Support by contacting our company

Bug report

Feel free to send us a bug report with the full state of the **WRS** by executing the following command:
On the WRS

wrs_version > /tmp/bug_report.txt
rtu_stat >> /tmp/bug_report.txt
dmesg >> /tmp/bug_report.txt

Obtain the IP of the switch
ifconfig eth0 | grep addr

And retrieving the file from your computer by using SSH:

On your client

scp root@<IP_of_the_switch>:/tmp/bug_report.txt ~

6.5 Contact-Us

To contact Seven Solutions company please use:

- info@sevensols.com
- (+34) 958 285 024
- http://www.sevensols.com

6.6 Save Our Environment

This symbol means that when the equipment has reached the end of its life cycle, it must be taken to a recycling centre and processed separate from domestic waste.

The cardboard box, the plastic contained in the packaging, and the parts that make up this device can be recycled in accordance with regionally established regulations.

Never throw this electronic equipment out along with your household waste. You may be subject to penalties or sanctions under the law. Instead, ask for instructions from your municipal government on how to correctly dispose of it. Please be responsible and protect our environment.
7 References

- wr_external_reference.pdf: Connect the WRS in GrandMaster mode.

- SFPs Wiki: Type of SFP supported by the WRS