Contents

1 Introduction 5
 1.1 About this Guide 5

2 Product Overview 6
 2.1 Package 6
 2.2 Front panel (Legend) 6
 2.3 Back panel (Legend) 7

3 Basics 8
 3.1 Default Setting 8
 3.2 Quick Startup 8
 3.3 USB Connections 9
 3.4 Login via USB 9
 3.5 Login via SSH 9
 3.6 Login using Windows 10
 3.7 Login using the Web Management Interface 10
 3.8 After login: 12
 3.9 Web Management Interface Features: 12

4 Configurations 14
 4.1 Booting 14
 4.2 Non-DHCP user 14
 4.3 GrandMaster mode 14
 4.4 Firmware updates 15
 4.5 Advanced configuration 15

5 Safety Notes 16

6 Appendix 17
 6.1 Specification 17
 6.2 Features 18
 6.3 Warranty 18
 6.4 FAQs & Troubleshooting 18
 6.5 Contact-Us 19
 6.6 Save Our Environment 19
7 References
Copyright

This document is copyrighted (under the Berne Convention) by Seven Solutions company and is formally licensed to the public under GPL v2.0 license. Report content can be copied, modified, and redistributed.

The Seven Solutions Logo can not be modified in any form, or by any means without prior written permission by Seven Solutions.

Licenses

The "User Guide" (as defined above) is provided under the terms of GPL v2.0
Copyright (C) 2013 - Seven Solutions

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

The WRS has been released under the CERN OHL licence.

Copyright CERN 2011.
This documentation describes Open Hardware and is licensed under the CERN OHL v. 1.1.

You may redistribute and modify this documentation under the terms of the CERN OHL v.1.1. (http://ohwr.org/cernohl). This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN OHL v.1.1 for applicable conditions
Revision table

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Author</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>18/02/2013</td>
<td>Benoit Rat</td>
<td>Initial Version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td>Reviewer: Rodrigo Agis (7S)</td>
</tr>
<tr>
<td>0.2</td>
<td>26/03/2013</td>
<td>Benoit Rat</td>
<td>Adding suggestion from Beck, Dietrich Dr (GSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>27/03/2013</td>
<td>Benoit Rat</td>
<td>Modifying licence to GPL v2.0 to be compatible with the package</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>23/05/2013</td>
<td>Benoit Rat</td>
<td>Updating 125MHz out to CLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>26/07/2013</td>
<td>Benoit Rat</td>
<td>Adding suggestion from Erik Van Der Bij (CERN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>26/07/2013</td>
<td>Benoit Rat</td>
<td>Updating for v3.3 release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seven Solutions</td>
<td></td>
</tr>
</tbody>
</table>
Glossary

DHCP The Dynamic Host Configuration Protocol to obtain network configuration.

FMC FPGA Mezzanine Card, an ANSI standard for mezzanine card form factor.

HDL Hardware description language.

LM32 LatticeMico32 is a 32-bit microprocessor soft core optimized for field-programmable gate arrays (FPGAs).

NAND NAND Flash Memory, a type of reprogrammable non-volatile computer memory.

PCIe Peripheral Component Interconnect Express, a high-speed serial computer expansion bus standard.

PTP Precise Time Protocol, a time synchronization protocol.

SMC SubMiniature version C, coaxial connector used in radio-frequency circuits.

SFP Small form-factor pluggable transceiver, a hot-pluggable transceiver for optical fiber.

SPEC Simple PCIe FMC carrier.

SVEC Simple VME FMC carrier.

UART Universal Asynchronous Receiver/Transmitter.

WR White Rabbit.

WRS White Rabbit Switch.

WMI Web Management Interface
1 Introduction

The White Rabbit Switch (WRS) is the key component of the White Rabbit Protocol that provides precision timing and high synchronization over an Ethernet-based network.

1.1 About this Guide

This document is intended as a user guide for quickly setup your switch in a White Rabbit Network. For more details on advanced topics please refers to the Advanced configuration section or to the wr-switch-sw.pdf guide.
2 Product Overview

2.1 Package

The WRS package is composed of various elements:

- The packaging box
- A power cable according to the country of distribution.
- The 18 SFP ports switch.
- SFP LC connectors
 - 16x AXGE-3454-0531 (violet)
 - 2x AXGE-1254-0531 (blue)

Note: The SFP LC connectors are optional. Consult the SFPs Wiki for more information about the compatibility of SFPs and how to use them.

2.2 Front panel (Legend)

![Figure 1: Front Panel of the WRS](image)

1. The 18 SFP ports
2. Synced/Activity LEDs
3. Link/WR Mode LEDs
4. Management Mini-USB (B) port
5. Status LED
6. Power LED
7. PPS output
8. Synced CLK reference Output (62.5 MHz)
9. PPS input (GPS Clock)
10. 10MHz reference clock input (GPS/Cesium)
11. 125MHz reference clock input (Not used)
12. Ethernet 100Mbps Management Port
2.3 Back panel (Legend)

13. Ground Connector
14. Generic Button
15. Flashing Button (See firmware update)
16. RS232 Management Port (GPRMC)
17. FPGA Mini-USB (B) UART
18. ARM Mini-USB (B) UART
19. Power Switch
20. Power Plug
21. Serial Number and MACs

Figure 2: Back Panel of the WRS
3 Basics

3.1 Default Setting

The device is factory configured with the following default settings:

- IP configuration is **DHCP**
- MACs are given by the manufacturer; labeled on back panel #21
 - MAC1 corresponds to the management port (RJ45).
 - MAC2 corresponds to the first SFP port ($wr[0 \rightarrow 17] \leftrightarrow MAC2 + [0 - 17]$).
- WR mode is **BoundaryClock** (Simple Master)
 - The first two ports (SFPs 1 & 2) are configured as WR slave.
 - The other ports (SFPs [3-18]) are configured as WR master.
- SSH user: **root**
- SSH password: (empty/just press enter)
- Boot method: from Nandflash firmware
- Web Management Interface user: **admin**
- Web Management Interface password: (empty)

3.2 Quick Startup

To get the switch quickly working we recommend you to:

1. Plug an Ethernet cable to the **Ethernet 100Mpbs Management Port**.
2. Plug the power cable to the **Power Plug**.

After all connections have been made, toggle the power-switch on to turn the device on. After the power on, the **WRS** should behave as follows:

3. The **Power LED** goes green
4. After 15s, the **Status LED** goes orange which means that the **WRS**’s kernel has started.
5. Then the fan start working which means that FPGA has been correctly programmed.
6. Finally, it goes green when everything is successful (PLL is locked).

You have now the **WRS** ready to be used in a WR network.

7. Connect the blue SFPs (AXGE-1254-0531) to the SFP port 1 and 2 of the **WRS**. These SFPs are the ones that will receive synchronization message from another master **WRS** or from the grandmaster **WRS**. If you only have one switch in your network you might configure it in the **GrandMaster mode**.

8. You can plug the other SFP ports [2-16] with violet SFPs (AXGE-3454-0531) to the WR node such as **SPEC, SVEC, …**

www.sevensols.com/whiterabbitsolution
3.3 USB Connections

The **WRS** has three different USB ports used to communicate/monitorize through a PC.

- Management Mini-USB (B) port
- FPGA Mini-USB (B) UART
- ARM Mini-USB (B) UART

These ports correspond themselves to different devices on your computer.

- ttyACM0 (when the *Status LED* is green)
- ttyUSB0
- ttyUSB1

To connect to them you need to open a serial console such as minicom

```
## Connecting to the Management USB port
minicom -D /dev/ttyACM0 -b 115200

## Connecting to the FPGA UART
minicom -D /dev/ttyUSB0 -b 115200

## Connecting to the ARM UART
minicom -D /dev/ttyUSB1 -b 115200
```

Note: ttyUSB0 and ttyUSB1 usually correspond respectively to FPGA and ARM UART. However this order can change dependably on how you plug the cable.

3.4 Login via USB

Once the device has been correctly started up (*Status LED* is green), it is recommended to use the USB management port to connect to the device instead of the ARM UART.

```
## Connecting to the Management USB port
minicom -D /dev/ttyACM0 -b 115200
```

The ARM UART is usually employed during development and monitoring because the kernel and daemons messages are sent to this console.

3.5 Login via SSH

The Ethernet management port automatically obtains its IP using the DHCP protocol. If you don’t have any DHCP router/server in your network please refer to the non-DHCP section.

To obtain the IP of the **WRS** you can connect to your DHCP server interface and retrieve the IP, or connect to ttyACM0 to retrieve the IP (*ipconfig eth0*).

If the **WRS** IP is for example 192.168.1.50 you might connect using:

```
ssh root@192.168.1.50
```

And press enter when requesting the password.

1In Debian-like distribution you can install minicom by executing `sudo apt-get install minicom`.
3.6 Login using Windows

The process of login to the switch using Windows (XP, Vista, 7, 8) is pretty similar:

1. You first need to download the Putty Tool and install it.

2. Then you need to list and find out which serial port in Windows corresponds to which interface. A simple way to perform this is to plug only one USB cable at a time, and go to Device Manager > Ports (COM & LPT) to check the name of the COM<X> port.

3. Finally to connect through the USB you just need to open the Putty tool and configure it as indicated in the figure below. Do not forget to replace the COM9 port name by the one that corresponds to the USB management.

![Putty Configuration](image)

Figure 3: Putty - USB connection

4. Similarly, you can connect to the WRS using the SSH protocol. You should not forget to replace the IP of your WRS (yellow) by the one in your subnetwork.

3.7 Login using the Web Management Interface

If you want to access and manage the WRS using the web interface, it is necessary to connect the WRS manager ethernet port to your local network. The access should be carried out by a network browser (Mozilla Firefox and Google Chrome supported) as it follows:

1. Open your browser and type the IP address (i.e. 192.168.1.50) of the WRS. By default, the network IP configuration is provided by the DHCP server in the same network and can be retrieved from it.

2. After accessing the [WMI], you should enter the web interface user and password, which is not the same for the SSH connection, otherwise you will be only able to see the Dashboard info. By default the user is `admin` with no password. For this reason it is strongly recommended to change the password.

In order to change the [WMI] password you just need to click on “User: admin” on the left side of the webpage. You have to enter your username (admin), old password, new password and repeat the new password. Once you submit the new password you will be redirected to the main screen and logged out.
Figure 4: Putty - SSH connection

Figure 5: Web Management Interface - Login
3.8 After login:

Once you are logged in you can use various tools to monitor the WRS. All these tools are found in
/wr/bin/ which is included in the $PATH.

The following list resumes the most interesting commands:

- **wrsw_version**: Print information about the SW & HW version of the WRS.
- **rtu_stat**: Routing Table Unit Statistic, returns the routing table information where we can
 find which MAC needs to be forwarded to which port. It also allows to add and delete entries.
- **wr_mon**: WR Switch Sync Monitor, outputs information about the state of WR synchronisation
 such as Phase Tracking, Master-Slave delay, link asymmetry, etc...
- **spll_dbg_proxy**: SoftPLL debug proxy, reads out the debug FIFO datastream from the Soft-
 PLL and proxies it via TCP connection to the application running on an outside host, where
 it can be plotted, analyzed, etc.

Note: More information about each tool can be obtain using the embedded help argument: --help, -h or help.

Warning: The SFP ports are labeled from 1 to 18 on the front panel but their corresponding
network interface are named from wr0 to wr17.

3.9 Web Management Interface Features:

[WMI] is a web interface that allows the WRS management from a web browser. It displays the
main configuration and status of the main services and programs that are available for the switch,
such as endpoints’ mode and calibration status, SFP calibration, PTP, SNMP, VLANs, etc. It acts
as an abstraction layer between the back-end scripts and programs in /wr/bin/ folder, making the
WR switch management easier for the user.

List of all the actions that can be performed by using the [WMI]:

- Display info: IP configuration, switch HW/SW/GW description, WR date, PPSi status,
 SNMP server status, NTP server status.
- Stop/run services: PPSi, WRSW_HAL, NTP.
- NTP server setup.
- Modify endpoint wr_master/wr_slave mode.
- VLAN setup.
- White-Rabbit timing.
- Modify maximum filesize of uploaded files to the switch.
- PPSi daemon configuration: clock class, clock accuracy, etc.
- Terminal simulation avoiding SSH connections.
- Login system.
- Modify login password.
- Load lm32 and FPGA binaries into the switch.
- Switch reboot.
- Backup and restore configuration files for services (PPSi, HAL, SNMP, etc).
- Restore configuration files from tarball.
- Flash firmware.
- Backup firmware.
Figure 6: Web Management Interface - Switch Management
4 Configurations

4.1 Booting

After 10 seconds, the bootloader automatically loads the WRS firmware from the Flash NAND memory of the switch. If you connect to the ARM debug port you might see the following message:

Welcome on WRSv3 Boot Sequence
1: boot from nand (default)
2: boot from TFTP script
3: edit config
4: exit to shell
5: reboot

Note: If you want to change how the WRS is booted you can place a wrboot script in your TFTP root folder and select the second option or you can edit the configuration (third option). Please find more explanations in the Advanced configuration.

4.2 Non-DHCP user

If you have no DHCP server in your network you must connect to the WRS using the login via USB method and then edit the interfaces file:

vi /etc/network/interfaces

for example, in a 192.168.1.x subnetwork you might replace the iface eth0 inet dhcp by

iface eth0 inet static
 address 192.168.1.10
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255
 gateway 192.168.1.1

Note: If you are willing to use TFTP script in a non-DHCP network, you must also statically set the IP in the bootloader configuration.

4.3 GrandMaster mode

In a White Rabbit network, almost all the switches are configured as master (a.k.a SimpleMaster) (default configuration). They transmit the clock signal that comes from other switches. However the “top” switch connected to the GPS signal is called the GrandMaster and is configured in a specific way.

To configure a switch as GrandMaster you must edit the wrsw_hal.conf file

vi /wr/etc/wrsw_hal.conf

And uncommenting the timing.mode value the line below:

timing = {
 -- other values
 mode = "GrandMaster"; -- grand-master with external reference
};

^To edit in vi: Ins Insert text; Esc back to normal mode; :wq Save and Exit
4 Configurations

Figure 7: White Rabbit Network

For a more detailed explanation on how to configure and connect the switch as GrandMaster, please consult the wr_external_reference.pdf document.

4.4 Firmware updates

This section proposes a simple way to update the firmware of the WRS by flashing the memory using the Management Mini-USB\(^3\).

1. Download the flashing package and extract it.
2. Download the latest stable release of the WRS firmware in a tar.gz package.
3. Connect the Management Mini-USB port to the PC\(^4\).
4. Start the flashing procedure by executing in a linux console: `flash-wrs -e -m1 <MAC1> -m2 <MAC2> wr-switch-sw-<latest_version>.tar.gz` where MAC1 and MAC2 are written in the [back panel (label #21)](#).
5. At this step you will be asked to restart the WRS, using the Power Switch, while pressing the Flash Button.
6. The flashing procedure should start and it takes some time to perform.
7. The switch will restart by itself which means that the flashing operation has finished.

4.5 Advanced configuration

Please refer to the White Rabbit Switch: software build scripts manual (wr-switch-sw.pdf) that explains advanced topics such as:

- Advanced flashing options.
- Configuring specific MAC address.
- Modification of the bootloader.
- Changing Slave/Master port type.
- Building from the sources.
- etc.

\(^3\)The flashing operation is only available for linux environment, and it is recommended to use Debian-like distribution such as “Ubuntu”

\(^4\)Please, make sure that the management USB port (ttyACM0) is not used by another process such as minicom.
5 Safety Notes

Warning: Do not block the air vents which are located on back panel of the WRS, the internal temperature might increase and damage the switch.

Warning: To increase the lifetime of the WRS it is recommended to use the switch in a controlled ambient environment and limit to the ambient condition stated in the Specification Appendix.

Warning: The standard power source for this equipment is designed to work in the range of 110-240V with 50-60Hz.

Warning: This equipment is intended to be grounded using the Grounded Connector. Ensure that the host is connected to earth ground during normal use.
6 Appendix

6.1 Specification

<table>
<thead>
<tr>
<th>FPGA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Xilinx Virtex-6 (LX240T)</td>
</tr>
<tr>
<td>Package</td>
<td>1156-pin BGA</td>
</tr>
<tr>
<td>Slices</td>
<td>37,680 (4 LUTs and 8 flip-flops)</td>
</tr>
<tr>
<td>Memories</td>
<td>416x36Kb (9,504Kb) Block RAM</td>
</tr>
<tr>
<td></td>
<td>32MB NOR Flash</td>
</tr>
<tr>
<td>Softcore</td>
<td>LatticeMico32 (LM32)</td>
</tr>
<tr>
<td>I/O</td>
<td>20 GTX transceivers for SFP links</td>
</tr>
<tr>
<td></td>
<td>40 GPIO for generic purpose (LEDs, SFP detection, ...)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Monitoring power supply</td>
</tr>
<tr>
<td>Temperature</td>
<td>Sensor control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ARM Atmel AT91 SAM9G45</td>
</tr>
<tr>
<td>Core</td>
<td>400MHz (ARM926E)</td>
</tr>
<tr>
<td>Memories</td>
<td>64MB DDR2 (16-bit bus chip)</td>
</tr>
<tr>
<td></td>
<td>256MB NAND flash chip</td>
</tr>
<tr>
<td></td>
<td>8MB boot flash</td>
</tr>
<tr>
<td>I/O</td>
<td>32bit Async Bridge with FPGA</td>
</tr>
<tr>
<td></td>
<td>100Base-T Ethernet</td>
</tr>
<tr>
<td>OS</td>
<td>Linux (Kernel v2.6.39)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OnChip Clock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL</td>
<td>AD9516 (14-Output Clock Generator with Integrated 1.6 GHz VCO)</td>
</tr>
<tr>
<td>Synthesizer</td>
<td>TI CDCM61002RHB (28-683MHz)</td>
</tr>
<tr>
<td>DAC</td>
<td>2xAD5662BRJ (16bit; 2.7-5.54V)</td>
</tr>
</tbody>
</table>
6.2 Features

- PTPv2 (IEEE 1588-2008)
- WRP daemon (node discovery, etc.)
- DHCP client
- SSH server
- Web Management Interface
- Python Support
- ARP/ DNS / EtherWake protocol

6.3 Warranty

The **WRS** is fully factory tested and warranted against manufacturing defects for a period of one year. As the circumstances under which this **WRS** is installed can not be controlled, failure of the **WRS** due to installation problems can not be warranted. This includes misuse, miswiring, overheating, operation under loads beyond the design range of the **WRS**. For warranty or non-warranty replacement send the **WRS** to:

Seven Solutions
C/ Baza, parcela 19, nave 3
Polígono Industrial Juncaril,
18210 Peligros
(Granada), SPAIN.

6.4 FAQs & Troubleshooting

If you are experiencing some issues please look first at the **WRS FAQ** wiki page if you can find an answer.

You can also reach out the wiki to see if your issue is a known bug and if a solution was found:
http://www.ohwr.org/projects/wr-switch-sw/wiki/Bugs

You can also request Technical Support by contacting our company

Bug report

Feel free to send us a bug report with the full state of the **WRS** by executing the following command:
On the WRS

```
wrsw_version > /tmp/bug_report.txt
rtu_stat >> /tmp/bug_report.txt
dmesg >> /tmp/bug_report.txt
```

Obtain the IP of the switch
```
ifconfig eth0 | grep addr
```

And retrieving the file from your computer by using SSH:
```
# On your client
scp root@<IP_of_the_switch>:/tmp/bug_report.txt ~
```

6.5 Contact-Us

To contact Seven Solutions company please use:

- info@sevensols.com
- (+34) 958 285 024
- http://www.sevensols.com

6.6 Save Our Environment

This symbol means that when the equipment has reached the end of its life cycle, it must be taken to a recycling centre and processed separate from domestic waste.

The cardboard box, the plastic contained in the packaging, and the parts that make up this device can be recycled in accordance with regionally established regulations.

Never throw this electronic equipment out along with your household waste. You may be subject to penalties or sanctions under the law. Instead, ask for instructions from your municipal government on how to correctly dispose of it. Please be responsible and protect our environment.
7 References

- **wrs-3/18.pdf**: Datasheet for the White Rabbit Switch v3 - 18 SFPs
- **wr-switch-sw.pdf**: Advanced documentation on how using the software
- **wr_external_reference.pdf**: Connect the WRS in GrandMaster mode.
- **whiterabbitsolution**: White Rabbit as a complete timing solutions
- **WRS Wiki**: White Rabbit Switch Wiki on ohwr.org
- **WRS FAQ**: WR-Switch Frequently Added Questions
- **wr-switch-testing**: Project for testing the switch itself
- **SFPs Wiki**: Type of SFP supported by the WRS
- **flashing package**: http://www.sevensols.com/dl/wrs-flashing/latest_stable.tar.gz