
WR Testbencher

Description of the WR Testnecher’s components, please read with the drawing of the WR
Testbencher, at the end of the document, by hand:

Testbencher GUI and User App.

● The interface presents configuration of the system, tests and results.
● The user can load template of the tests based on the RFC 2544/2889 and WR test, stored

in a data base.
● The user can modify and save new tests in the data base.
● Before be able to run a test, the App must check that the system configuration and the DUT

fulfils the requirements of the test.
● Transmission of the test to the WR Testbencher.

Implementation

C/C++ and Qt

Test and Result Data Base

● Contains the tests template (RFC 2544/2889 and WR test) and stores the new test save by
the user.

● Stores the results of the Tests.

Implementation

MySQL or other open data base.

Collector

● Receives the test configuration from the GUI&App
● Processes and shapes the test information

Length Frame Payload

Frame Rate N° Trials

Burst Size Destination Address

Traffic Direction Load per Port

Interframe gap VLAN flags

● Transmits the processed test information to the Engine
● Gathers the results of a test and sends them to the data base
● Creation of pseudo-random/specific destination MAC address

● Creation of pseudo-random/specific payload
● Creates a destination port table for a test that send different traffic, rate etc... in every port.

Testbencher Engine

● Stores the result of a test in memory and sens to the Collector , once is finished the test.
● Organizes the parameters of the test (length frame, payload etc..) and uses them to load,

trigger and stop the Frame Generator
● Receives from the Frame Detector information of the test or DUT and stores the relevant

information in memory.
● Modifies on-the-fly parameters of the running test, if the information received from DUT

fulfils pre-defined conditions.

Frame Generator

● Generates frames with parameters: legnth, rate etc.. received from the Engine
● Indicates to the Frame2Port Allocator the destination port of the frames

Implementation

Maciej has developed a frame generator for testing the FEC, we could reuse it.

Frame Detector

● Detects pre-defined frames sensible for the test, either from the DUT or from the traffic’s
test

● Propagate the detected frames to the Engine, or to the WRPTP/RSTP dameon.

Frame2Port Allocator

● Allocates a frame in the queue of a destination port in the corresponding level of priority
according to the information provided from the Frame Generator.

 Implementation

It is quite similar to the part of the swcore_spec, from (what is so call in the swcore_spec) Input
block to the Output block.

CoS Queues and Queue Manager

● Hosts accordingly the frames in seven (or less) queues coming from Frame2Port Allocator
● The Queue Manager transmits to its port the frames from the queues accordingly an

algorithm defined to respect a different levels of priority.

 Implementation

The Queue Manager algorithm is being researched in GSI in the frame of a Master Thesis.
The CoS Queues is a similar to the Output Block in the swcore

