Please see the CERN-OHL-S v2 for applicable conditions.

SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.

Copyright CERN 2019-2020.
European Organization for Nuclear Research
CH-1211 Geneva 23, Switzerland

Last note: Resistors must be placed close to the PLL. If not possible, we should resort to single 300R and 36R resistors.

Please see the CERN-OHL-S v2 for applicable conditions.

SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.
Place on a thermal-insulated PCB area, with vibration damper and screening box.
Banks 15 and 16 powered with VCCO=3.3V.

Banks 12, 13 and 14 powered with VCCO=3.3V.

Bank 0 powered with VCCO=3.3V.
Layout note: make sure MGT_R_REF is also used to set the direction of the external (100ohm) parallel resistor.

All inputs are NOT externally terminated (DIFF_TERM=FALSE).

All single-ended signals are LVCMOS.

European Organization for Nuclear Research

Copyright CERN 2011-2012.
This software describes Open Hardware and is licensed under the CERN-OHL v2.
You can redistribute and modify this documentation and make products using it under the terms of the CERN-OHL v2 (http://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.
Please use the CERN-OHL v2 for applicable conditions.
Copyright CERN 2019-2020.
This source describes Open Hardware and is licensed under the CERN-OHL-S v2.
You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).
This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.
Please see the CERN-OHL-S v2 for applicable conditions.

- FPGA: Configuration -

WR2RF VME Module

Project/Equipment: WR2RF VME Module

Copyright CERN 2019-2020.

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

Please see the CERN-OHL-S v2 for applicable conditions.
Some 7 series devices require local PCB capacitors because high-frequency ceramic
 capacitors are already present inside the device package (see Table 18 and Table 20 for the package
 subtypes). Table 18 and Table 20 list the package subtypes for 7series and
 Virtex-7 devices. Spartan-6 and Spartan-6 device do not have package
 capacitors.

https://www.xilinx.com/support/documentation/user_guides/ug483_7Series_PCB.pdf
SN74VMEH22501DGGR is able to source 66mA and sink up to 48mA. Supplied from 3.3V delivers still above 3V at 60mA, it means that is able to easily drive 50Ohm load.

Please see the CERN-OHL-S v2 for applicable conditions.

SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY.

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.

Copyright CERN 2019-2020.

Please see the CERN-OHL-S v2 for applicable conditions.
The documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.

Copyright CERN 2019-2020.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-oohl-s).

Please see the CERN-OHL-S v2 for applicable conditions.
Regulator for AXIOM45ULN-24 OCXO

Default voltage: 11.5V
Startup current: 350 mA
Steady-state current: 150 mA
Voltage setting: 1.4V (internal) + 6.4 V + 3.2V + 0.4 + 0.1 V = 11.5V

OCXO_CURR_SENSE (Volts) = 40*R*(ocxo_current(A))
Startup voltage sense = 0.7V
Steady-state voltage sense = 0.3V
One 100nf for PIN3V3_TRIG_A pin
One 100nf for power current loop
Connect the AGND and PGND pins to thermal pad directly on the same layer

Please see the CERN-OHL-S v2 for applicable conditions.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.

Copyright CERN 2019-2020.
Please see the CERN-OHL-S v2 for applicable conditions.
SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

Please see the CERN-OHL v2 for applicable conditions.
Please see the CERN-OHL-S v2 for applicable conditions.

You may redistribute and modify this documentation and make products using it under the terms of the CERN-OHL-S v2 (https://cern.ch/cern-ohl).

This source describes Open Hardware and is licensed under the CERN-OHL-S v2.

According to ANSI/VITA 580@100MHz, each power pin should be capable of providing at least 1A of current at 80°C.

Therefore:
- P12V_VME: 1A
- M12V_VME: 1A
- P5V_VME: 3A

Please use the CERN-OHL-S v2 for applicable conditions.
This source describes Open Hardware and is licensed under the CERN-OHL-S v2.